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Overview

I survey of techniques for proving stability for finite-difference
discretizations of

−εu′′ − b(x)u′ + c(x)u = 0, x ∈ X := [0, 1]

u(0) = U0, u(1) = U1

0 < ε ≤ ε∗ � 1

I reaction-diffusion (RD):

b ≡ 0, c∗ ≥ c(x) ≥ c∗ > 0, x ∈ X ; U1 = 0

I convection-diffusion (CD):

b∗ ≥ b(x) ≥ b∗ > 0, c∗ ≥ c(x) ≥ 0, x ∈ X
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Solution properties

I RD

|u(k)(x)| ≤ Mε−k/2e−x
√

m/ε, x ∈ X , k = 0, 1, . . .

c∗ > m > 0

One layer assumed for simplicity.

I CD

|u(k)(x)| ≤ M
(

1 + ε−ke−b∗x/ε
)
, x ∈ X , k = 0, 1, . . .
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Special meshes

I Bakhvalov mesh BN
` , ` = 1 for CD and ` = 2 for RD

xi = λ

(
i

N

)
, i = 0, 1, 2, . . . ,N

λ(t) =

{
ϕ(t) := ε1/`at/(q − t) if 0 ≤ t ≤ τ
ψ(t) := ϕ′(α)(t − α) + ϕ(α) if τ ≤ t ≤ 1

τ solves ψ(1) = 1, τ ∈ (0, q), 0 < q < 1, a > 0

I Shishkin mesh SN
` – piecewise uniform

xi = hi , i = 0, 1, . . . , J, h =
η

J
=

aε1/` lnN

J
, a > 0

xi = η + H(i − J), i = J + 1, J + 2, . . . ,N, H =
1− η
N − J
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RD – central scheme

I in all discrete problems: wN
0 = U0, wN

N = U1

L2w
N
i := −εD ′′2wN

i + ciw
N
i = 0, i = 1, 2, . . . ,N − 1

D ′′2w
N
i =

1

~i

(
wN
i+1 − wN

i

hi+1
−

wN
i − wN

i−1
hi

)

hi = xi − xi−1, ~i =
hi + hi+1

2

I This scheme is stable uniformly in ε, i.e. the matrix A of the
discrete problem satisfies

‖A−1‖ ≤ M

in the norm induced by the maximum vector norm.
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Principle 1

I Varah (1975). Assume A is strictly diagonally dominant by

rows and set α = mini

(
|aii | −

∑
j 6=i |aij |

)
, α > 0. Then

‖A−1‖ < 1/α.

I L2 is stable uniformly in ε.
A = [aij ] is tridiagonal with

ai ,i−1 = − ε

hi~i
, ai ,i+1 = − ε

hi+1~i

aii = −ai ,i−1 − ai ,i+1 + ci , i = 1, 2, . . . ,N − 1.

Therefore,

|aii | − |ai ,i−1| − |ai ,i+1| = ci , i = 1, 2, . . . ,N − 1,

and α ≥ min{1, c∗} > 0.
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Principle 2

I A is an L-matrix if aii > 0 and aij ≤ 0 for i 6= j . A is inverse
monotone (i.m.) if A−1 ≥ 0. A is an M-matrix if it is an i.m.
L-matrix.

I Bohl (1974). Let A be an L-matrix and let there exist a vector
vN such that vN > 0 and (AvN)i ≥ β > 0, i = 0, 1, . . . ,N. A
is then an M-matrix and it holds that ‖A−1‖ ≤ β−1‖vN‖.

I For L2, use vN = eN = [1, 1, . . . , 1]T . β = min{1, c∗}.
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RD – A hybrid 4th-order scheme
I Herceg (1990) – Hermite scheme generalized on nonuniform

mesh:

L4w
N
i := −εD ′′2wN

i + D(cwN)i = 0

DwN
i = γ−i w

N
i−1 + γiw

N
i + γ+i w

N
i+1

γ−i =
h2i −h

2
i+1+hihi+1

12hi~i , γ+i =
h2i+1−h

2
i +hihi+1

12hi+1~i

γi = 1− γ−i − γ
+
i =

h2i +h2i+1+3hihi+1

6hihi+1

I Vulanović (1993)

T4w
N
i =

{
L4w

N
i if γ−i ≥ 0, γ+i ≥ 0, and νi ≤ 1

L2w
N
i otherwise

νi =
[(hi+1 + hi )|hi+1 − hi |+ hihi+1]c∗

12ε

I This scheme is stable uniformly in ε by Principle 2.
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RD – Another 4th-order scheme

I Vulanović (1997) – simpler Hermite scheme:

L̃4w
N
i := −εD ′′2wN

i + D̃(cwN)i = 0

D̃wN
i = γ̃−i w

N
i−1 + 5

6w
N
i + γ̃+i w

N
i+1

γ̃−i = 2hi−hi+1

12~i , γ̃+i = 2hi+1−hi
12~i

I This scheme is stable uniformly in ε by Principle 1:

|aii | − |ai ,i−1| − |ai ,i+1| ≥
(

5

6
− 3hi + 3hi+1

12~i

)
ci + O(~i )

=
1

3
ci + δi ≥

1

3
c∗ + O(~i )
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RD – A 6th-order scheme

Vulanović (2004), SN
2 mesh only, ε ≤ MN−2

T6,2w
N
i :=


L2w

N
i for i = 1

L6w
N
i for 2 ≤ i ≤ J − 2

L2w
N
i for J − 1 ≤ i ≤ N − 1

L6w
N
i := −εD4w

N
i +

1

90

[
−(cwN)i−2 + 4(cwN)i−1

+ 84(cwN)i + 4(cwN)i+1 − (cwN)i+2

]
= 0

D ′′4w
N
i =

1

12h2
(−wN

i−2 + 16wN
i−1 − 30wN

i + 16wN
i+1 − wN

i+2)



Principle 3

I T6,2 is stable by Principle 3.

I Principle 3 (standard decomposition, Lorenz (1977)) gives
conditions for A to be a product of two M-matrices.

I Main condition [
ak−1,k < 0 ak−1,k+1 > 0
akk > 0 ak,k+1 < 0

]
4akkak−1,k+1 ≤ ak−1,kak,k+1
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RD – Another 6th-order scheme

I Vulanović (2004), SN
2 mesh only, 5c∗ > c∗

T6,4w
N
i :=


L4w

N
i for i = 1

L6w
N
i for 2 ≤ i ≤ J − 2

L4w
N
i for J − 1 ≤ i ≤ N − 1

I Some elements ai ,i±1 positive.

I Store the terms which cause this in matrix K , ‖K‖ ≤ c∗/6.

I B = A− K satisfies ‖B−1‖ ≤ 6/(5c∗) by Principle 3.

I ‖B−1K‖ < 1
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Principle 4

I If A = B + K , ‖B−1‖ ≤ C1, ‖K‖ ≤ C2, C1C2 < 1, then

‖A−1‖ = ‖(I + B−1K )−1B−1‖ ≤ ‖B−1‖
1− ‖B−1K‖

≤ C1

1− C1C2
.

I T6,4 is stable by Principle 4, Vulanović (2004).
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CD – Overview

I SDD (Principle 1) not used because c 6> 0.

I M-matrices (Principle 2) used for the upwind (1st-order)
scheme and hybrid upwind (2nd-order) scheme.

I Lorenz Principle 3 used for a new 3rd-order scheme.

I Principle 4 used for a two-parameter problem and a 3rd-order
scheme.
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CD – Upwind & central schemes

I Upwind – stable by Principle 2

Λ1w
N
i := −εD ′′2wN

i − bi
wN
i+1 − wN

i

hi+1
+ ciw

N
i = 0

I Central – not stable

Λ2w
N
i := −εD ′′2wN

i − b(xi )
wN
i+1 − wN

i−1
hi + hi+1

+ ciw
N
i = 0
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CD – A hybrid 2nd-order scheme

I ρi = b∗hi
2ε

P2w
N
i =

{
Λ2w

N
i if ρi ≤ 1

Λ̃1w
N
i otherwise

Λ̃1w
N
i := −εD ′′2wN

i − bi+1/2

wN
i+1 − wN

i

hi+1

+c(xi+1/2)
wN
i + wN

i+1

2
= 0

I Stable by Principle 2.
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CD – A new 3rd-order scheme

I on SN
1 only; χ = h or χ = H

D
(2)
χ,sw

N
i =

1

χ2
[(1−s)wN

i−1+(3s−2)wN
i +(1−3s)wN

i+1+swN
i+2]

D
(1)
χ,sw

N
i =

1

6χ
[(−3s2 + 6s − 2)wN

i−1 + 3(3s2 − 4s − 1)wN
i

+3(−3s2 + 2s + 2)wN
i+1 + (3s2 − 1)wN

i+2]

D
(0)
χ,sw

N
i = [s(s − 1)wN

i−1 + 2(1− s2)wN
i + s(s + 1)wN

i+1]/2

I Λχ,swi := −εD(2)
χ,swN

i − b(xi+s)D
(1)
χ,swN

i + c(xi+s)D
(0)
χ,swN

i = 0

I s = σ := (3−
√

15)/6 or s = θ := 1/
√

3
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(cont’d)

I Hybrid scheme

P3w
N
i =


Λh,σw

N
i for 1 ≤ i ≤ J − 2

Λ̃1w
N
i for i = J − 1, J

ΛH,θw
N
i for J + 1 ≤ i ≤ N − 2

Λ̃1w
N
i for i = N − 1

I Stable by Principle 3 if ε∗ ≤ M∗/N.
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Two-parameter problem

I µ = εp, p > 1
2 , c∗ ≥ c(x) ≥ c∗ > 0, x ∈ X

−εu′′ − µb(x)u′ + c(x)u = 0, u(0) = U0, u(1) = 0

I Solution behaves like in RD; SN
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P̃3w
N
i =

{
Λh,σw

N
i for 1 ≤ i ≤ J − 2

Λ2w
N
i for i = J − 1, J, . . . ,N − 1

I Stable by Principle 4 if (ε∗)p ≤ M0/N.


	Introduction
	Overview
	Solution properties
	Special meshes

	Reaction-diffusion
	RD – central scheme
	Principle 1
	Principle 2
	RD – A hybrid 4th-order scheme
	RD – Another 4th-order scheme
	RD – A 6th-order scheme
	Principle 3
	RD – Another 6th-order scheme
	Principle 4

	Convection-diffusion
	CD – Overview
	CD – Upwind & central schemes
	CD – A hybrid 2nd-order scheme
	CD – A new 3rd-order scheme
	(cont'd)
	Two-parameter problem


