# The Gram matrix in inner product modules over $C^*$ -algebras

Ljiljana Arambašić

(joint work with D. Bakić and M.S. Moslehian)

Department of Mathematics University of Zagreb

Applied Linear Algebra May 24–28, Novi Sad

## **Definition**

A  $C^*$ -algebra is a Banach \*-algebra  $\mathcal A$  such that  $\|a^*a\|=\|a\|^2, \forall a\in \mathcal A$ . A right  $\mathcal A$ -module  $\mathcal X$  is a **semi-inner product**  $\mathcal A$ -module if there is an  $\mathcal A$ -semi-inner product  $\langle \cdot, \cdot \rangle: \mathcal X \times \mathcal X \to \mathcal A$ , i.e. the mapping satisfying

for all  $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}, a \in \mathcal{A}$ .

Let  ${\mathcal X}$  be a semi-inner product  ${\mathcal A}$ -module. We define a semi-norm on  ${\mathcal X}$  by

$$||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}, \quad x \in \mathcal{X}$$

where the latter norm denotes that in the  $C^*$ -algebra A.

# Examples of $C^*$ -algebras:

- $C([0,1]) = \{f : [0,1] \to \mathbb{C} : \text{f is continuous}\}$  with  $||f|| = \max\{|f(t)| : t \in [0,1]\}.$
- ②  $\mathbb{B}(H)$  with the operator norm and the usual adjoint.
- **3** In particular, if H is n-dimensional, then  $M_n(\mathbb{C}) \cong \mathbb{B}(H)$  is a  $C^*$ -algebra.
- **4** Every closed \*-subalgebra of  $\mathbb{B}(H)$  is a  $C^*$ -algebra.

# **Examples of semi-inner product modules:**

- lacktriangle Every semi-inner product space is a semi-inner product  $\mathbb C$ -module.
- ② Each  $C^*$ -algebra  $\mathcal{A}$  can be regarded as a semi inner product  $\mathcal{A}$ -module via  $\langle a,b\rangle=a^*b\ (a,b\in\mathcal{A})$ .
- **③** For every pair of Hilbert spaces  $H_1$  and  $H_2$ , the space  $\mathbb{B}(H_1, H_2)$  of all bounded linear operators from  $H_1$  to  $H_2$  is a Hilbert  $\mathbb{B}(H_1)$ -module with the inner product  $\langle T, S \rangle = T^*S$ .

## **Definition**

Let  $(\mathcal{X}, \langle \cdot, \cdot \rangle)$  be a semi-inner product  $\mathcal{A}$ -module and  $n \in \mathbb{N}$ . The Gram matrix of elements  $x_1, \ldots, x_n \in \mathcal{X}$  is defined as the matrix

$$[\langle x_i, x_j \rangle] \in M_n(\mathcal{A}).$$

- For every  $x_1, \ldots, x_n \in \mathcal{X}$  it holds  $[\langle x_i, x_i \rangle] \geq 0$  in  $M_n(\mathcal{A})$ .
- The Cauchy-Schwarz inequality for  $x, y \in \mathcal{X}$

$$\langle x,y\rangle\langle y,x\rangle \leq \|y\|^2 \langle x,x\rangle \Leftrightarrow \left[ egin{array}{cc} \langle x,x
angle & \langle x,y
angle \ \langle x,y
angle^* & \|\langle y,y
angle \|e \ \end{array} 
ight] \geq 0.$$

Positivity of the Gram matrix sharpens the Cauchy-Schwarz inequality, since

$$\left[\begin{array}{cc} \langle x,x\rangle & \langle x,y\rangle \\ \langle x,y\rangle^* & \|\langle y,y\rangle\|e \end{array}\right] \geq \left[\begin{array}{cc} \langle x,x\rangle & \langle x,y\rangle \\ \langle x,y\rangle^* & \langle y,y\rangle \end{array}\right] \geq 0.$$

Let  $(\mathcal{X}, \langle \cdot, \cdot \rangle)$  be a semi-inner product  $\mathcal{A}$ -module. For  $z \in \mathcal{X}, \langle z, z \rangle \neq 0$ , we define

$$\langle \cdot, \cdot \rangle_z : \mathcal{X} \times \mathcal{X} \to \mathcal{A}, \quad \langle x, y \rangle_z := \|z\|^2 \langle x, y \rangle - \langle x, z \rangle \langle z, y \rangle.$$

Observe that  $\langle x, x \rangle_z = ||z||^2 \langle x, x \rangle - \langle x, z \rangle \langle z, x \rangle \ge 0$ . Then  $\langle \cdot, \cdot \rangle_z$  is another semi-inner product on  $\mathcal X$  and therefore  $\left[\langle x_i, x_j \rangle_z\right] \ge 0$ , that is,

$$\left[\left\langle x_{i},x_{j}\right\rangle \right] \geq \frac{1}{\|z\|^{2}}\left[\left\langle x_{i},z\right\rangle \left\langle z,x_{j}\right\rangle \right] = \left[\left\langle x_{i},z\right\rangle \left(\frac{1}{\|z\|^{2}}e\right)\left\langle z,x_{j}\right\rangle \right].$$

Replacing  $\langle \cdot, \cdot \rangle$  with  $\langle \cdot, \cdot \rangle_z$  in the last inequality we get

$$\left[\left\langle x_{i},x_{j}\right\rangle \right] \geq \left[\left\langle x_{i},z\right\rangle \left(\frac{1}{\|z\|^{2}}e+b\right)\left\langle z,x_{j}\right\rangle \right]$$

where  $b:=\frac{1}{\|z\|^2\cdot\|\|z\|^2\langle z,z\rangle-\langle z,z\rangle^2\|}(\|z\|^2e-\langle z,z\rangle)^2\in\mathcal{A}^+.$  We proceed by induction.

#### **Theorem**

Let  $(\mathcal{X}, \langle \cdot, \cdot \rangle)$  be a semi-inner product  $\mathcal{A}$ -module,  $n \in \mathbb{N}$  and  $x_1, \ldots, x_n \in \mathcal{X}$ . Let  $z \in \mathcal{X}$ ,  $\langle z, z \rangle \neq 0$ . Then there is a non-decreasing sequence  $(p_m(\langle z, z \rangle))_m \in \mathcal{A}^+$  such that

$$\begin{aligned} \left[ \langle x_i, x_j \rangle \right] & \geq & \dots \geq \left[ \langle x_i, z \rangle \, p_m(\langle z, z \rangle) \, \langle z, x_j \rangle \right] \geq \left[ \langle x_i, z \rangle \, p_{m-1}(\langle z, z \rangle) \, \langle z, x_j \rangle \right] \\ & \geq & \dots \geq \left[ \langle x_i, z \rangle \, p_0(\langle z, z \rangle) \, \langle z, x_j \rangle \right] = \frac{1}{\|z\|^2} \left[ \langle x_i, z \rangle \, \langle z, x_j \rangle \right] \geq 0. \end{aligned}$$

## **Theorem**

Let  $(\mathcal{X}, \langle \cdot, \cdot \rangle)$  be a semi-inner product  $\mathcal{A}$ -module,  $n \in \mathbb{N}$  and  $x_1, \ldots, x_n \in \mathcal{X}$ . Let  $z \in \mathcal{X}$ ,  $\langle z, z \rangle \neq 0$ . If  $b \in \mathcal{A}^+$  is such that  $\|zb^{\frac{1}{2}}\| \leq 1$ , then

$$[\langle x_i, x_j \rangle] \ge [\langle x_i, z \rangle b \langle z, x_j \rangle].$$

It holds that  $||zp_m(\langle z,z\rangle)^{\frac{1}{2}}||=1,\ m\in\mathbb{N}.$ 

Let  $\mathcal{A}$  be a unital  $C^*$ -algebra. For a positive element  $a \in \mathcal{A}$ ,  $a \neq 0$ , define

$$f_0(a) = a,$$
  $g_0(a) = ||f_0(a)||e - f_0(a),$   $f_m(a) = f_{m-1}(a)g_{m-1}(a),$   $g_m(a) = ||f_m(a)||e - f_m(a),$   $m \in \mathbb{N}.$ 

For m such that  $f_m(a) \neq 0$  we define

$$\begin{split} & p_0(a) = \frac{e}{\|f_0(a)\|}, \\ & p_1(a) = \frac{e}{\|f_0(a)\|} + \frac{g_0(a)^2}{\|f_0(a)\| \cdot \|f_1(a)\|}, \\ & p_2(a) = \frac{e}{\|f_0(a)\|} + \frac{g_0(a)^2}{\|f_0(a)\| \cdot \|f_1(a)\|} + \frac{g_0(a)^2 g_1(a)^2}{\|f_0(a)\| \cdot \|f_1(a)\| \cdot \|f_2(a)\|}, \\ & \dots \\ & p_m(a) = \frac{e}{\|f_0(a)\|} + \sum_{l=1}^m \left( \frac{1}{\prod_{k=0}^l \|f_k(a)\|} \prod_{k=0}^{l-1} g_k(a)^2 \right). \end{split}$$

If  $f_m(a) \neq 0$  and  $f_{m+1}(a) = 0$  then we define

$$p_j(a) = p_m(a), \quad \forall j > m.$$

Suppose  $A \subseteq \mathbb{B}(H)$ .

•  $f_m(a), m \in \mathbb{N}$  are polynomials in a:

$$f_0(\lambda) = \lambda,$$
  
 $f_1(\lambda) = ||a||\lambda - \lambda^2,$   
 $f_m(\lambda) = ||f_{m-1}(a)||f_{m-1}(\lambda) - f_{m-1}(\lambda)^2, \quad m \in \mathbb{N}.$ 

Observe that deg  $f_m = 2^m$  for all m.

- $f_m(a) \geq 0$  for all  $m \in \mathbb{N}$ .
- $||f_{m+1}(a)|| \leq \frac{1}{4} ||f_m(a)||^2$ .
- Suppose that there is  $m \in \mathbb{N}$  such that  $f_m(a) = 0$ . Let  $\lambda \in \sigma(a)$ . Then

$$f_m(\lambda) \in f_m(\sigma(a)) = \sigma(f_m(a)) = \{0\}.$$

This shows that  $\sigma(a)$  is contained in a finite set, namely in the set of all zeros of the polynomial  $f_m$ .

• Suppose  $\sigma(a)$  is a finite set. Let  $\sigma(a) \setminus \{0\} = \{\lambda_1, \lambda_2, \dots \lambda_k\}$  where  $\lambda_1 > \lambda_2 > \dots > \lambda_k > 0$ . By the spectral theory there exist orthogonal projections  $P_1, P_2, \dots P_k \in \mathbb{B}(H)$  which are mutually orthogonal and such that  $a = \sum_{i=1}^k \lambda_i P_i$ .

$$f_0(a) = a = \sum_{i=1}^k \lambda_i P_i, \quad ||f_0(a)|| = \lambda_1.$$

$$f_1(a) = \lambda_1 f_0(a) - f_0(a)^2 = \sum_{i=2}^{\kappa} \lambda_i (\lambda_1 - \lambda_i) P_i.$$

This shows that  $f_1(a)$  has at most k-1 non-zero elements in its spectrum. Suppose that  $\lambda_2(\lambda_1-\lambda_2)\geq \lambda_i(\lambda_1-\lambda_i)$  for all  $i=2,\ldots k$ . Then  $\|f_1(a)\|=\lambda_2(\lambda_1-\lambda_2)$  and

$$f_2(a) = \sum_{i=3}^k (\lambda_1 - \lambda_i)(\lambda_2 - \lambda_i)(\lambda_1 - \lambda_2 - \lambda_i)\lambda_i P_i.$$

- Let a be a positive element of a  $C^*$ -algebra  $\mathcal{A} \subseteq \mathbb{B}(H)$ . Then there exists  $m \in \mathbb{N}$  such that  $f_m(a) = 0$  if and only if a has a finite spectrum.
- If such m exists, then  $m \leq \operatorname{card} \sigma(a)$ .
- If A is finite-dimensional, then  $\sigma(a)$  is finite.
- Suppose that  $\mathcal{A}=\mathbb{C}$ , i.e. that  $\mathcal{X}$  is a semi-inner product space. Then for each  $z\in\mathcal{X}$  the spectrum  $\sigma(\langle z,z\rangle)$  is a singleton, so  $f_1(\langle z,z\rangle)=0$ . Hence, in this situation, we have only one inequality:

$$\left[\left\langle x_{i},x_{j}\right\rangle \right] \geq \frac{1}{\|z\|^{2}}\left[\left\langle x_{i},z\right\rangle \left\langle z,x_{j}\right\rangle \right] \geq 0.$$

## **Example**

Let a = diag(5, 4, 2, 1). Here we have

$$f_0(a) = \operatorname{diag}(5, 4, 2, 1), \quad ||f_0(a)|| = 5, \quad p_0(a) = \operatorname{diag}(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}),$$

$$f_1(a) = \operatorname{diag}(0, 4, 6, 4), \quad ||f_1(a)|| = 6, \quad p_1(a) = \operatorname{diag}(\frac{1}{5}, \frac{7}{30}, \frac{1}{2}, \frac{11}{15}),$$

$$f_2(a) = \operatorname{diag}(0, 8, 0, 8), \quad ||f_2(a)|| = 8, \quad p_2(a) = \operatorname{diag}(\frac{1}{5}, \frac{1}{4}, \frac{1}{2}, 1),$$

$$f_3(a) = 0 \qquad \Rightarrow \qquad p_k(a) = p_2(a), \quad k \ge 3.$$

Observe that

$$p_2(a) = a^{-1}$$
.

#### **Theorem**

Let  $A \subseteq \mathbb{B}(H)$  be a  $C^*$ -algebra and  $a \in A^+$ ,  $a \neq 0$  such that  $\sigma(a)$  is finite. Let M be the number with the property  $f_M(a) \neq 0$  and  $f_{M+1}(a) = 0$ . Then:

- $ap_M(a)$  is the orthogonal projection to the image of a.
- In particular, if a is an invertible operator, then  $p_M(a) = a^{-1}$ .

# Sketch of the proof.

- For every  $\lambda \in \sigma(a)$  there is  $m \leq M$  such that  $f_m(\lambda) = \|f_m(a)\|$ .
- If  $f_m(\lambda_m) = \|f_m(a)\|$  then  $p_j(\lambda_m) = \frac{1}{\lambda_m}$  for all  $j \geq m$ .



#### **Theorem**

Let a be a positive element in a  $C^*$ -algebra  $\mathcal{A} \subseteq \mathbb{B}(H)$  with an infinite spectrum. Then

$$\lim_{m\to\infty}a^2p_m(a)=a.$$

In particular, if a is an invertible operator,  $\lim_{m\to\infty} p_m(a) = a^{-1}$ .

## Remark

From  $\lim_{m\to\infty} a^2 p_m(a) = a$  one easily gets  $\lim_{m\to\infty} a p_m(a) = p$  in the strong operator topology.

## **Example**

- Suppose that a is a positive compact operator with an infinite spectrum. Then  $ap_m(a)$  is compact operator for every m.
- If the sequence  $(ap_m(a))$  converges in norm, then the limit has to be a compact operator.
- Let p be the orthogonal projection to  $\overline{\text{Im }a}$ . Since  $\sigma(a)$  is an infinite set,  $\overline{\text{Im }a}$  is an infinite dimensional subspace and hence p is a non-compact operator.
- Therefore, the sequence  $(ap_m(a))$  does not converge to p in norm.

## **Proposition**

Let  $a \in \mathbb{B}(H)$  be a positive operator and  $p \in \mathbb{B}(H)$  the orthogonal projection to  $\overline{Im}\,a$ . Then  $(ap_m(a))_m$  converges to p in norm if and only if  $Im\,a$  is a closed subspace of H.

At the end, let us turn back to the Gram matrix.

## **Proposition**

Let  $\mathcal{X}$  be a semi-inner product module over a  $C^*$ -algebra  $\mathcal{A} \subseteq \mathbb{B}(H)$ . For  $z \in \mathcal{X}$  and  $a = \langle z, z \rangle \in \mathcal{A}$ , let  $p \in \mathbb{B}(H)$  denotes the orthogonal projection to  $\overline{Im}\,a$ . Suppose that there exists a positive operator  $h \in \mathbb{B}(H)$  such that for all  $x_1, \ldots, x_n \in \mathcal{X}$  and every  $m \geq 0$  it holds

$$[\langle x_i, x_j \rangle] \geq [\langle x_i, z \rangle \ h \ \langle z, x_j \rangle] \geq [\langle x_i, z \rangle \ \rho_m(a) \ \langle z, x_j \rangle].$$

Then aha = a and ah = p.

If  $\sigma(a)$  is finite and  $M \in \mathbb{N}$  such that  $ap_M(a) = p$ , then h and  $p_M(a)$  coincide on Im a.