
Comparison Between Some Matrix Methods
with Applications in Pattern Recognition

Elena Pelican 1

Faculty of Mathematics and Computer Science
“Ovidius” University, Constanta, Romania

{epelican}@univ-ovidius.ro

ALA Conference
May 24-28, 2010, Novi Sad

1joint work with L. Grecu
1 / 57

Outline

1. The Problem
2. The Simplest Method
3. Eigenfaces

3.1 Describing the Algorithm
3.2 Examples

4. Higher Order SVD (HOSVD)
4.1 Face Recognition
4.2 Clasification Algorithm
4.3 Examples

5. Nonnegative Matrix Factorization (NMF)
5.1 Different Algorithms
5.2 Examples
5.3 Neural Networks (NN)
5.4 Examples with NN

2 / 57

The Problem

Problem:

Given an image z (the picture of a person/digit), we want to find the
closest image from our database {v1, . . . , vM}.

3 / 57

The Simplest Method - 1

Solution:

The simplest method (intuitive): is to compare z with every vi. We
have to find out an index i0 ∈ {1, . . . ,M} such that

‖z − vi0‖ = min
1≤i≤M

‖z − vi‖ .

4 / 57

The Simplest Method - 2

The database

the pictures have the same resolution N ×N ;
every single image is transformed into a vector.

Experiments (The simplest method)

the faces database contains the pictures of 11 persons with 10
pictures for each person;
the digit database contains the pictures of all 10 digits with 10
pictures for each digit.

5 / 57

The Simplest Method - 3

Results for faces (consistent case).

6 / 57

The Simplest Method - 4

Results for digits (consistent case).

7 / 57

The Simplest Method - 5

Results for faces (inconsistent case).

8 / 57

The Simplest Method - 6

Results for digits (inconsistent case).

9 / 57

Eigenfaces Algorithm - 1

In Eigenfaces algorithm (proposed by [Turk and Pentland, 1991]) we
have to pursue the following steps:

1. The database composed by the images I1, I2, . . . , IM (all images
having the same resolution N ×N).

2. Set every single image Ii as a vector Γi : N2 × 1.
3. Compute the average face vector Ψ:

Ψ = 1
M

M∑
i=1

Γi.

4. Subtract the average face vector from all vectors.
Φi = Γi −Ψ.

5. Compute the covariance matrix C:

C = 1
M

M∑
n=1

ΦnΦT
n = AAT

(
N2 ×N2

)
.

where A = [Φ1 Φ2 . . . ΦM]
(
N2 ×M

)
.

6. Compute the eigenvectors qi of C = AAT .
10 / 57

Eigenfaces Algorithm - 2

Remarks:

C = AAT ⇒ ∃Q orthogonal such that
QT CQ =diag(σ1, . . . , σN2) = D,
σi ≥ 0, σ1 ≥ . . . ≥ σr > 0;
Q =col[q1, . . . , qN2];
Cqi = σiqi şi {q1, . . . , qN2} forms an orthonormal basis in

IRN2 ⇒ ∀x ∈ IRN2
, x =

N2∑
i=1

< x, qi > qi.

Note: Similar considerations can be made for Ĉ = AT A.

11 / 57

Eigenfaces Algorithm - 3

But C : N2 ×N2, N2 =resolution ⇒ “big”! ⇒ the diagonalization
QT CQ =diag(σ1, . . . , σN2) can be very expensive.
Solution: From all N2 eigenvectors q1, . . . , qN2 we keep only the first
K, corresponding to the K largest eigenvalues σ1 ≥ . . . ≥ σK > 0.
We have

Cx =
N2∑
j=1

xjCqj =
N2∑
j=1

σjxjqj

and

Cx =
N2∑
j=1

< x,Φj > Φj .

So we obtain Cx =
N2∑
j=1

< x,Φj > Φj ≈
K∑

j=1

σjxjqj .

12 / 57

Eigenfaces Algorithm - 4

We represent Φi in the basis {q1, . . . , qN2}

Φi = Γi −Ψ =
N2∑
j=1

< Φi, qj > qj .

We approximate Φ̂i ≈ Φi by

Φ̂i =
K∑

j=1

< Φi, qj > qj =
K∑

j=1

wi
jqj . (∗)

The vector Φ̂i is represented by the Fourier coefficients vector from
(*), i.e.

wi =


wi

1

wi
2
...

wi
K

 ,∈ IRK i = 1, 2, . . . ,M .

13 / 57

Eigenfaces Algorithm - 5

Given a image, Γ, with the same resolution as Γi, then we follow the
steps:

1. Normalize Γ: Φ = Γ−Ψ.
2. Project on the eigenvectors space

Φ̂ =
K∑

j=1

< Φ, qj > qj =
K∑

j=1

wjqj .

3. Represent Φ̂ as: w =


w1

w2

...
wK

.

4. Find i0 ∈ {1, . . . ,M} satisfying
∥∥w − wi0

∥∥ = min
1≤i≤M

∥∥w − wi
∥∥.

14 / 57

Experiments with Eigenfaces Algorithm - 1

Note. The algorithm works also for images with N ×N1 resolution.
In this case we obtain a vector Γ of dimension NN1 × 1.

We have
a database with 110 persons (92×112)2

a database with 100 digits (92×112)

We considered K = 20

2We also tested on 100×100 and 105×120.
15 / 57

Experiments with Eigenfaces Algorithm - 2

Results for faces (consistent case).

16 / 57

Experiments with Eigenfaces Algorithm - 3

Results for digits (consistent case).

17 / 57

Experiments with Eigenfaces Algorithm - 4

Results for faces (inconsistent case).

18 / 57

Experiments with Eigenfaces Algorithm - 5

Results for digits (inconsistent case).

19 / 57

HOSVD (Higher Order SVD)

The tensor A ∈ IRl×m×n can be written as

A = S ×1 U (1) ×2 U (2) ×3 U (3)

where U (1) ∈ IRl×l, U (2) ∈ IRm×m, U (3) ∈ IRn×n are orthogonal
matrices. S is a tensor of the same dimensions as A and has the
property that any two slices of S are orthogonal. U (i) result from
A(i) = U (i)Σ(i)

(
V (i)

)T
, A(i) = unfoldi(A).

20 / 57

Notations - 1

Let A ∈ IRl×m×n, U ∈ IRl0×l, and A×1 U is a tensor of dimension
l0 ×m× n defined by

(A×1 U) (j, i2, i3) =
l∑

k=1

uj,kak,i2,i3 .

Similary we have the 2-mode and 3-mode multiplications of a tensor
with a matrix:

(A×2 U) (i1, j, i3) =
m∑

k=1

uj,kai1,k,i3 ,

(A×3 U) (i1, i2, j) =
n∑

k=1

uj,kai1,i2,k.

21 / 57

Notations - 2

We have A(i) = unfoldi(A), where

unfold1 (A) = A(1) = (A (:, 1, :) A (:, 2, :) . . . A (:,m, :)),

unfold2 (A) = A(2) =
(
A (:, :, 1)T

A (:, :, 2)T
. . . A (:, :, n)T

)
,

unfold3 (A) = A(3) =
(
A (1, :, :)T

A (2, :, :)T
. . . A (l, :, :)T

)
.

Using these unfoldings we obtain

A×1 U = fold1 (Uunfold1 (A)),
A×2 U = fold2 (Uunfold2 (A)),
A×3 U = fold3 (Uunfold3 (A)).

22 / 57

unfolding 1

unfolding 2

unfolding 3 23 / 57

Face Recognition - 1

For our problem, we use the following form of the HOSVD of tensor A

A = C ×p H, where C = S ×i F ×e G.

For a particular expression e we have

A (:, e, :) = C (:, e, :)×p H,

A (:, e, :) = Ae and C (:, e, :) = Ce are matrices. Hence we obtain

Ae = CeH
T , e = 1, 2, . . . , ne.

24 / 57

Face Recognition - 2

The same orthogonal matrix H appears in all ne relations. If
HT =

(
h1 . . . hnp

)
we get

a
(e)
p = Cehp.

Let z ∈ IRni be the picture of an unknown person, in an unknown
expression. The coordinates of z in the e expression basis can be
obtained resolving the least squares problem

min
αe

‖Ceαe − z‖2.

25 / 57

Clasification Algorithms - 1

The algorithm (see [Elden, 2007]) is
Algorithm A1

for e = 1, 2, . . . , ne

solve min
αe

‖Ceαe − z‖2

for p = 1, 2, . . . , np

if ‖αe − hp‖2 < tol, then is person p and STOP
end

end

For each image z we have to solve ne least square problems with
Ce ∈ IRni×np ⇒ lot of time to compute.

26 / 57

Clasification Algorithms - 2

From C = S ×i F ×e G we obtain

Ce = FBe,

where Be ∈ IRnenp×np , Be = (S ×e G) (:, e, :) .
F ∈ IRni×nenp and F̂ =

(
FF⊥

)
. We insert F̂T inside the norm and

we can solve the least squares problems by solving

min
αe

∥∥Beαe − FT z
∥∥

2
, e = 1, 2, . . . , ne.

The algorithm is the following (see [Elden, 2007]).

27 / 57

Clasification Algorithms - 3

Algorithm A2

Compute the QR decomposition of all matrices Be, Be = QeR, with
e = 1, 2, . . . , ne.
Compute ẑ = FT z.
for e = 1, 2, . . . , ne

solve Reαe = QT
e ẑ for αe

for p = 1, 2, . . . , np

if ‖αe − hp‖2 < tol, then is person p and STOP
end

end

Tensors and matrices have large dimensions ⇒ we can truncate them
in such way that the truncated HOSVD can still approximate the
tensor A. Fk = F (:, 1 : k), with np < k << ni and apply the
algorithm A2 for the obtained truncated matrices and tensors.

28 / 57

Experiments with HOSVD - 1

Figure: Consistent case

29 / 57

Experiments with HOSVD - 2

Figure: Inconsistent case

30 / 57

Our Approach - 1

In the previous case, that number k had to be chosen such that is
much smaller than ni, but larger than np. We shall make use of the
following result (see [Golub and Van Loan, 1996]) in order to compute
k from algorithm A2, instead of just choosing a proper k.

Theorem

Let the SVD of A ∈ IRM×N be given by A = UΣV T . If
k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i , (1)

then min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

31 / 57

Our Approach - 2

The above theorem tells us, that for a given tolerance ε > 0 such that
σ1 ≥ σ2 ≥ . . . ≥ σk > ε ≥ σk+1 ≥ . . . ≥ σp ≥ 0, p = min(m,n) the
matrix Ak given by (1) has the property

‖A−Ak‖2 ≤ ε,

i.e. Ak = argminB∈R(k) ‖A−B‖2 , where
R(k) =

{
P ∈ IRM×N , rank(P) = k

}
.

32 / 57

Experiments - 1

Figure: Consistent case

33 / 57

Experiments - 2

Figure: Inconsistent case

34 / 57

NMF (Nonnegative Matrix Factorization)

Matrix A ∈ IRn×m is our face/digit database, aj (column j) is a face/
digit.
NMF aims to find two matrices W ∈ IRn×k and H ∈ IRk×m such that

A ≈ WH. (2)

After NMF we obtain aj ≈ Whj . We can consider the lines of matrix
W as basis images and the vector hj as the corresponding weight
vectors.

35 / 57

NMF - 2

One of the algorithms initially proposed for finding the matrices W
and H used the following metric:

DN (A||WH) =
∑
i,j

aij ln

 aij∑
l

wilhlj

 +
∑

k

wikhkj − aij

 (3)

as the measure of the cost for factoring A into WH.
The NMF factorization is the outcome of optimization:

min
W,H

DN (A||WH) (4)

subject to wik ≥ 0, hkj ≥ 0,
∑
i

wij = 1, ∀ j.

36 / 57

NMF - 3

The update rules for the t-th iteration are given by:

h
(t)
kj = h

(t−1)
kj

∑
i

w
(t−1)
ik

aijP
l

w
(t−1)
il h

(t−1)
lj∑

i

w
(t−1)
ik

(5)

and

w
(t)
ik = w

(t−1)
ik

∑
h

(t)
kj

aijP
l

w
(t−1)
il h

(t)
lj∑

j

h
(t)
kj

. (6)

37 / 57

NMF - 4

All NMF algorithms are iterative and they are sensitive to the
initialization of W and H.
In all cases, a good initialization can improve the speed accuracy
of the algorithms, as it can produce faster convergence to an
improved local minimum.
Nearly all NMF algorithms use simple random initialization.

38 / 57

NMF - 5

Results of NMF reconstruction for faces and digits with (5)-(6) and
the initialization: wij = 1

n and H=random(k,m).

10 iterations 50 iterations

10 iterations 50 iterations

39 / 57

NMF - 6

Results of NMF for faces and digits with (5)-(6) and the
initialization: wij = 1

n and hj = W+aj .

10 iterations 50 iterations

10 iterations 50 iterations

40 / 57

NMF - 7

Multiplicative update algorithms for NMF

Algorithm A3 (see [Berry et al, 2007])

W=random(n,k)
H=random(k,m)
for i=1:maxiter

H = H. ∗ (WT A)./(WT WH + 10−9)
W = W. ∗ (AHT)./(WHHT + 10−9)

end

41 / 57

NMF - 8

Results of multiplicative update algorithms for NMF for faces and
digits

10 iterations 50 iterations

10 iterations 50 iterations

42 / 57

NMF - 9

Constraint NMF (CNMF)

Algorithm A4 (see [Berry et al, 2007])

W=random(n,k)
H=random(k,m)
for i=1:maxiter

H = H. ∗ (WT A)./(WT WH + β ∗H + 10−9)
W = W. ∗ (AHT)./(WHHT + α ∗W + 10−9)

end

43 / 57

NMF - 10

Results of CNMF for faces and digits

10 iterations 50 iterations

10 iterations 50 iterations

44 / 57

NMF - 11

The NMF problem can be written as

min ‖A−WH‖2
F , where W ≥ 0, H ≥ 0. (7)

At each alternating step in ACLS (Alternating Constrained Least
Squares) we must solve

min
hj

‖aj −Whj‖2
2 + λH ‖hj‖2

2 , where λH ≥ 0, hj ≥ 0. (8)

The ACLS algorithm is the following.

45 / 57

NMF - 12

ACLS algorithm

Algorithm A5 (see [Langville et al, 2006])

input λW , λH

W=random(n,k)
for i=1:maxiter

Solve for H in matrix equation (WT W + λHI)H = WT A.
Set all negative elements in H to 0.
Solve for W in matrix equation (HHT + λW I)WT = HAT .
Set all negative elements in W to 0.

end

46 / 57

NMF - 13

Results of ACLS reconstruction for faces and digits

10 iterations 50 iterations

10 iterations 50 iterations

47 / 57

Neural Networks - 1

“A neural network is an interconnected assembly of simple processing
elements, units or nodes, whose functionality is loosely based on the
animal neuron. The processing ability of the network is stored in the
inter-unit connection strengths, or weights, obtained by a process of
adaptation to, or learning from, a set of training patterns.”

Structure of a typical neuron

Humans can recognize faces very easily and we want computers to do
too ⇒ the idea of a computer which recognizes faces as human brain.
NN have been widely used in pattern recognition applications and it
has performed satisfactory in face recognition

48 / 57

Neural Networks - 2

Components of a simple neuron

where a = f(w1p1 + w2p2 + . . . + wRpR + b).

49 / 57

Neural Networks - 2

Given a specific task to solve, and a class of functions F , learning
means using a set of observations to find f∗ ∈ F which solves the
task in some optimal sense.
A neural network can be trained to produce a correct target
vector when presented with corresponding input vector.
Each traverse through all the training vectors is called an epoch.

50 / 57

Examples with NN - 1

Results for faces (consistent case).

51 / 57

Examples with NN - 2

Results for digits (consistent case).

52 / 57

Examples with NN - 3

Results for faces, the inconsistent case.

53 / 57

Conclusions

SVD

an optimality property; the truncated SVD produces the best rank-k approximation

speedy and robust computation

unique factorization; initialization does not affect SVD algorithms orthogonality; resulting
basis vectors are orthogonal and allow conceptualization of original data as vectors in space

NMF

sparsity and nonnegativity; the factorization maintains these properties of the original matrix

reduction in storage; the factors are sparse, which also results in easier application to new data

interpretability; the basis vectors naturally correspond to conceptual properties of the data

NN

NN imitates the human brain

most important is choosing the architecture of neural network (sequence of transfer functions)

using artificial neurons in order to train the classifier

54 / 57

References

Berry M. W., Browne M., Langville A. N., Pauca V. P. and Plemmons R. J.,
Algorithms and applications for approximate nonegative matrix factorization,
Computational Statistics and Data Analysis, 52, 2007, 155-173.

Bjorck, A., Numerical Methods For Least Squares Problems, SIAM,
Philadelphia, 1996.

Boutsidis C. and Gallopoulos E., SVD based initialization: A head start for
nonnegative matrix factorization, Pattern Recognition archive, 4, 2008,
1350-1362.

Elden, L., Matrix Methods in Data Mining and Pattern Recognition, SIAM,
Philadelphia, 2007.

Hoyer P. O., Non-negative Matrix Factorization with Sparsness Constraints,
Journal of Machine Learning Research, 5, 2004, 1457-1469.

Golub, G. and Van Loan, C., Matrix Computation, 3rd Edition, The John
Hopkins University Press, Baltimore 1996.

Langville A. N., Meyer C. D., Albright R., Cox J. and Duling D.,
Algorithms, Initializations, and Convergence for the Nonegative Matrix
Factorization, NCSU Technical Report Math 81706, 2006.

55 / 57

References

Latha P., Ganesan L. and Annadurai S.,Face Recognition using Neural
Networks, Signal Processing: An International Journal (SPIJ), 3, 2009,
153-160.

Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A
Convolutional Neural Network Approach, IEEE Transactions on Neural
Networks, Special Issue on Neural Networks and Pattern Recognition, 8,
1997, 98113.

Lee D. D. and Seung H. S., Algorithms Non-negative Matrix Factorization,
Advances in Neural Information Processing 13 (Proc. NIPS*2000). MIT
Press, 2001.

Turk, M. and Pentland, A., Eigenfaces for Recognition, Journal of Cognitive
Neuroscience, 1, 1991, 71-86.

De Lathauwer L., B. de Moor and J. Vandewalle, A multilinear singular
value decomposition, SIAM Journal Matrix Anal. Appl, 21, 2000, 1252-1278.

Zeb J., Javed M. Y. and Qayyum U., Low resolution single neural network
based face recognition, International journal of Biomedical Sciences, 2, 2007,
206-210.

56 / 57

Thank you!

57 / 57

