On Chebyshev Polynomials of Matrices

Petr Tichý

joint work with

Vance Faber and Jörg Liesen

Institute of Computer Science,
Academy of Sciences of the Czech Republic

May 24-28, 2010, Novi Sad
Applied Linear Algebra (ALA) 2010
Chebyshev polynomials of a compact set

- Chebyshev polynomials on the interval $[-1; 1]$ [Chebyshev 1859].
- Generalized by [Georg Faber 1920] to the idea of the Chebyshev polynomials of Ω, where Ω is a compact set in the complex plane \mathbb{C}: These polynomials $T_m^\Omega(z)$ solve the problem

\[
\min_{p \in \mathcal{M}_m(\Omega)} \| p(z) \|_{\infty}
\]

where \mathcal{M}_m is the class of monic polynomials of degree m.
Chebyshev polynomials of a compact set

- Chebyshev polynomials on the interval $[-1; 1]$ [Chebyshev 1859].
- Generalized by [Georg Faber 1920] to the idea of the Chebyshev polynomials of Ω, where Ω is a compact set in the complex plane \mathbb{C}: These polynomials $T^\Omega_m(z)$ solve the problem

$$\min_{p \in \mathcal{M}_m(\Omega)} \|p(z)\|_{\infty}$$

where \mathcal{M}_m is the class of monic polynomials of degree m.

Example:

Ω is an interval, a set of discrete points, the unit circle, etc.
Let $A \in \mathbb{C}^{n \times n}$ be normal, i.e.,

$$A = Q\Lambda Q^*, \quad Q^*Q = I.$$

Let $\| \cdot \|$ be the spectral norm and consider the problem

$$\min_{p \in \mathcal{M}_m} \| p(A) \|.$$
Let $A \in \mathbb{C}^{n \times n}$ be normal, i.e.,

$$A = Q\Lambda Q^*, \quad Q^*Q = I.$$

Let $\| \cdot \|$ be the spectral norm and consider the problem

$$\min_{p \in M_m} \| p(A) \|.$$

Then

$$\min_{p \in M_m} \| p(A) \| = \min_{p \in M_m} \| p(\Lambda) \| = \min_{p \in M_m(\Omega)} \| p(z) \|_{\infty}$$

where $\Omega = \{\lambda_1, \ldots, \lambda_n\}$.
Let $A \in \mathbb{C}^{n \times n}$ be normal, i.e.,

$$A = Q\Lambda Q^*, \quad Q^*Q = I.$$

Let $\| \cdot \|$ be the spectral norm and consider the problem

$$\min_{p \in \mathcal{M}_m} \| p(A) \|.$$

Then

$$\min_{p \in \mathcal{M}_m} \| p(A) \| = \min_{p \in \mathcal{M}_m} \| p(\Lambda) \| = \min_{p \in \mathcal{M}_m(\Omega)} \| p(z) \|_{\infty}$$

where $\Omega = \{\lambda_1, \ldots, \lambda_n\}$.

The problem for A is solved by the Chebyshev polynomial of Ω.
Let $A \in \mathbb{C}^{n \times n}$ be a general matrix. We consider the problem

$$\min_{p \in \mathcal{M}_m} \| p(A) \|.$$

- Introduced in [Greenbaum, Trefethen 1994].
- Unique solution $T^A_m(z) \in \mathcal{M}_m$ exists if $m < d(A)$, [Greenbaum, Trefethen 1994; Liesen, T. 2009].
- $T^A_m(z)$ is called the mth Chebyshev polynomial of A, or the mth ideal Arnoldi polynomial of A.
- Previous work on these polynomials in [Toh PhD thesis 1996], [Toh, Trefethen 1998], [Trefethen, Embree 2005].
- Here: [Faber, Liesen, T. 2010].
[Toh, Trefethen 1998] „Chebyshev polynomials of matrices are never far away from any discussion of convergence of Krylov subspace iterations in numerical linear algebra”.
Motivation

[Toh, Trefethen 1998] „Chebyshev polynomials of matrices are never far away from any discussion of convergence of Krylov subspace iterations in numerical linear algebra”.

GMRES and Arnoldi approximation problems:

[Greenbaum, Trefethen 1994]

\[
\min_{p \in \pi_m} \| p(A)b \| \quad \text{(GMRES)}, \quad \min_{q \in \mathcal{M}_m} \| q(A)b \| \quad \text{(Arnoldi)},
\]

\[
b \approx \{ Ab, \ldots, A^m b \}, \quad A^m b \approx \{ b, \ldots, A^{m-1} b \}.
\]
Motivation

[Toh, Trefethen 1998] „Chebyshev polynomials of matrices are never far away from any discussion of convergence of Krylov subspace iterations in numerical linear algebra“.

GMRES and Arnoldi approximation problems:
[Greenbaum, Trefethen 1994]

\[
\min_{p \in \pi_m} \| p(A)b \| \quad \text{(GMRES)},
\]

\[
\min_{q \in \mathcal{M}_m} \| q(A)b \| \quad \text{(Arnoldi)},
\]

\[b \approx \{ Ab, \ldots, A^m b \},\]

\[A^m b \approx \{ b, \ldots, A^{m-1} b \}.\]

One may remove \(b \) from the discussion and pose the following “ideal” approximation problems:

\[
\min_{p \in \pi_m} \| p(A) \| \quad \text{(Ideal GMRES)},
\]

\[
\min_{q \in \mathcal{M}_m} \| q(A) \| \quad \text{(Ideal Arnoldi)},
\]

\[I \approx \{ A, \ldots, A^m \},\]

\[A^m \approx \{ I, \ldots, A^{m-1} \}\]

(Chebyshev polynomial of \(A \))
Motivation Example

Let \(\lambda \in \mathbb{C} \). Consider an \(n \) by \(n \) Jordan block

\[
J_\lambda = \begin{bmatrix}
\lambda & 1 \\
& \ddots & \ddots \\
& & \ddots & 1 \\
& & & \lambda
\end{bmatrix} \in \mathbb{C}^{n \times n}.
\]

Question: How do the ideal GMRES and Chebyshev polynomials of \(J_\lambda \) look like?
Let $\lambda \in \mathbb{C}$. Consider an n by n Jordan block

$$J_\lambda = \begin{bmatrix}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{bmatrix} \in \mathbb{C}^{n \times n}.$$

Question: How do the ideal GMRES and Chebyshev polynomials of J_λ look like?

- Ideal GMRES polynomial of J_λ - a very difficult problem

 [T., Liesen, Faber 2007].

- Chebyshev polynomial of J_λ [Liesen, T. 2009]:

$$T_{m}^{J_\lambda}(z) = (z - \lambda)^m.$$
Outline

1. General results

2. Matrices and sets in the complex plane
Outline

1. General results

2. Matrices and sets in the complex plane
Shifts and scaling

Theorem
[Faber, Liesen, T. 2010]

For \(A \in \mathbb{C}^{n \times n} \) and \(\alpha \in \mathbb{C} \) the following hold:

\[
\min_{p \in \mathcal{M}_m} \|p(A + \alpha I)\| = \min_{p \in \mathcal{M}_m} \|p(A)\|, \\
\min_{p \in \mathcal{M}_m} \|p(\alpha A)\| = |\alpha|^m \min_{p \in \mathcal{M}_m} \|p(A)\|.
\]

- **Shift invariance:** Not surprising, because the polynomials are normalized at infinity.

- **Paper contains explicit relations between the coefficients of**
 \(T_m^A(\bar{z}) \), \(T_m^{A+\alpha I}(\bar{z}) \), and \(T_m^{\alpha A}(\bar{z}) \).
Example - shift of a matrix

Let \(a, b \in \mathbb{R} \) be given. Consider the block-diagonal matrix \(A \) with two \(n \times n \) Jordan blocks,

\[
A \equiv \begin{bmatrix} J_a & 0 \\ 0 & J_b \end{bmatrix}.
\]

Define

\[
\alpha \equiv \frac{a + b}{2}.
\]

Then

\[
A - \alpha I = \begin{bmatrix} J_\lambda & 0 \\ 0 & J_{-\lambda} \end{bmatrix} \quad \text{where} \quad \lambda \equiv \frac{a - b}{2},
\]

and the previous theorem implies

\[
\min_{p \in \mathcal{M}_m} \|p(A)\| = \min_{p \in \mathcal{M}_m} \|p(A - \alpha I)\|.
\]
Symmetry with respect to the origin

The Chebyshev polynomials of real intervals that are symmetric with respect to the origin are alternating between even and odd, i.e.

$$T_{m}^{[-a,a]}(z) = (-1)^m T_{m}^{[-a,a]}(-z).$$

Analogous result for Chebyshev polynomials of A?
Symmetry with respect to the origin

The Chebyshev polynomials of real intervals that are symmetric with respect to the origin are alternating between even and odd, i.e.

\[T_m^{[-a,a]}(z) = (-1)^m T_m^{[-a,a]}(-z). \]

Analogous result for Chebyshev polynomials of \(A \)?

Theorem

\[\text{Let } A \in \mathbb{C}^{n \times n} \text{ and a positive integer } m < d(A) \text{ be given. If there exists a unitary matrix } P \text{ such that either } \]

\[P^*AP = -A \text{ or } P^*AP = -A^T, \]

\[\text{then } \]

\[T_m^A(z) = (-1)^m T_m^A(-z). \]

[Faber, Liesen, T. 2010]
\[A = \begin{bmatrix} J_\lambda & J_{-\lambda} \end{bmatrix}, \quad P = \begin{bmatrix} I^\pm & I^\pm \end{bmatrix}, \]

where \(I^\pm = \text{diag}(1, -1, 1, \ldots, (-1)^{n-1}) \). Then

\[J_{-\lambda} = -I^\pm J_\lambda I^\pm \Rightarrow P^*AP = -A. \]
Example

\[
A = \begin{bmatrix}
 J_\lambda & J_{-\lambda}
\end{bmatrix}, \quad P = \begin{bmatrix}
 I^\pm & I^\pm
\end{bmatrix},
\]

where \(I^\pm = \text{diag}(1, -1, 1, \ldots, (-1)^{n-1}) \). Then

\[
J_{-\lambda} = -I^\pm J_\lambda I^\pm \Rightarrow P^* A P = -A.
\]

Moreover

\[
T_m^A(A) = \begin{bmatrix}
 T_m^A(J_\lambda) & T_m^A(J_{-\lambda})
\end{bmatrix},
\]

and

\[
\| T_m^A(J_{-\lambda}) \| = \| I^\pm T_m^A(-J_\lambda) I^\pm \| = \| T_m^A(J_\lambda) \|,
\]

i.e., the Chebyshev polynomial of \(A \) attains the same norm on each of the two diagonal blocks.
An alternation theorem

- Chebyshev polynomials for compact sets are characterized by alternation properties.

- Example: $T_m(z)$ for $[a, b] \subset \mathbb{R}$ has at least $m + 1$ alternations.

An Alternation Theorem for Matrices

Consider a block-diagonal matrix $A = \text{diag}(A_1, \ldots, A_h)$ where $d(A_j) \leq k$, $j = 1, \ldots, h$. Then the matrix

$$T^A_{k, \ell}(A) = \text{diag}(B_1, \ldots, B_h)$$

for $\ell = 1, 2, \ldots$, has at least $\ell + 1$ diagonal blocks B_j such that

$$\| B_j \| = \| T^A_{k, \ell}(A) \|.$$
An alternation theorem

- Chebyshev polynomials for compact sets are characterized by alternation properties.
- Example: $T_m(z)$ for $[a, b] \subset \mathbb{R}$ has at least $m + 1$ alternations.

An Alternation Theorem for Matrices [Faber, Liesen, T. 2010]

Consider a block-diagonal matrix $\mathbf{A} = \text{diag}(\mathbf{A}_1, \ldots, \mathbf{A}_h)$ where $d(\mathbf{A}_j) \leq k$, $j = 1, \ldots, h$. Then the matrix

$$T_{k \cdot \ell}^\mathbf{A}(\mathbf{A}) = \text{diag}(\mathbf{B}_1, \ldots, \mathbf{B}_h) \quad \ell = 1, 2, \ldots,$$

has at least $\ell + 1$ diagonal blocks \mathbf{B}_j such that

$$\| \mathbf{B}_j \| = \| T_{k \cdot \ell}^\mathbf{A}(\mathbf{A}) \|.$$

Example: If $\mathbf{A} = \text{diag}(\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^{n \times n}$, then $T_m^\mathbf{A}(\mathbf{A})$ has at least $m + 1$ diagonal entries with the same maximal absolute value.
Example

\[A = \text{diag}(A_1, A_2, A_3, A_4) \]

where each \(A_j = J_{\lambda_j} \) is a 3 \times 3 Jordan block. The four eigenvalues are \(-3, -0.5, 0.5, 0.75\), and \(k = d(A_j) = 3 \).
\[A = \text{diag}(A_1, A_2, A_3, A_4) \]

where each \(A_j = J_{\lambda_j} \) is a \(3 \times 3 \) Jordan block. The four eigenvalues are \(-3, -0.5, 0.5, 0.75\), and \(k = d(A_j) = 3 \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>(| T_m^A(A_1) |)</th>
<th>(| T_m^A(A_2) |)</th>
<th>(| T_m^A(A_3) |)</th>
<th>(| T_m^A(A_4) |)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.6396</td>
<td>1.4620</td>
<td>2.3970</td>
<td>2.6396</td>
</tr>
<tr>
<td>2</td>
<td>4.1555</td>
<td>4.1555</td>
<td>3.6828</td>
<td>4.1555</td>
</tr>
<tr>
<td>3</td>
<td>9.0629</td>
<td>5.6303</td>
<td>7.6858</td>
<td>9.0629</td>
</tr>
<tr>
<td>5</td>
<td>22.3872</td>
<td>20.7801</td>
<td>17.6382</td>
<td>22.3872</td>
</tr>
<tr>
<td>6</td>
<td>22.6857</td>
<td>22.6857</td>
<td>20.3948</td>
<td>22.6857</td>
</tr>
</tbody>
</table>
Outline

1. General results

2. Matrices and sets in the complex plane
Chebyshev polynomials $T^\Omega_m(z)$ of compact sets $\Omega \subset \mathbb{C}$

...unique polynomials that solve the problem

$$\min_{p \in \mathcal{M}_m} \max_{z \in \Omega} |p(z)| .$$

Chebyshev polynomials of Ω and Ψ [Kamo, Borodin 1994]

Let T^Ω_k be the kth Chebyshev polynomial of the infinite compact set $\Omega \subset \mathbb{C}$, let $p(z)$ be a monic polynomial of degree ℓ, and let

$$\Psi \equiv p^{-1}(\Omega) = \{z \in \mathbb{C} : p(z) \in \Omega\}$$

be the pre-image of Ω under the polynomial map p. Then

$$T^{\Psi}_k(z) = T^\Omega_k(p(z)) .$$
Given are $\lambda_1, \ldots, \lambda_\ell \in \mathbb{C}$ and $n \geq 1$. Consider

$$A = \begin{bmatrix} D & E \\ \cdot & \ddots & \ddots \\ \cdot & \ddots & E \\ \cdot & \cdot & \ddots & D \end{bmatrix} \in \mathbb{C}^{\ell \cdot h \times \ell \cdot h},$$

$$D = \begin{bmatrix} \lambda_1 & 1 \\ \cdot & \ddots \\ \cdot & \cdot & \ddots & 1 \\ \cdot & \cdot & \cdot & \lambda_\ell \end{bmatrix} \in \mathbb{C}^{\ell \times \ell}, \quad E = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ 1 \end{bmatrix} \in \mathbb{R}^{\ell \times \ell},$$

[Reichel, Trefethen 1992] related the pseudospectra of A to their symbol $f_A(z) = D + zE$. A
Chebyshev polynomials for lemniscates

$$A = \begin{bmatrix} \mathbf{D} & \mathbf{E} & \cdots & \cdots & \mathbf{D} \\ \mathbf{D} & \cdots & \cdots & \mathbf{E} \\ \cdots & \cdots & \cdots & \cdots & \mathbf{D} \end{bmatrix} \in \mathbb{C}^{\ell \times \ell \times h \times h}.$$

- Let $p(z) = (z - \lambda_1) \cdots (z - \lambda_\ell)$.
- The lemniscatic region $\mathcal{L}(p) \equiv \{z \in \mathbb{C} : |p(z)| \leq 1\}$.
- $\Psi \equiv \mathcal{L}(p)$, $\Omega \equiv$ the unit circle.

Chebyshev polynomials of A and of $\mathcal{L}(p)$ [Faber, Liesen, T. 2010]

$$T_{k \cdot \ell}^{\mathcal{L}(p)}(z) = (p(z))^k = T_{k \cdot \ell}^{A}(z), \quad k = 1, 2, \ldots, h - 1.$$

Moreover,

$$\max_{z \in \mathcal{L}(p)} |T_{k \cdot \ell}^{\mathcal{L}(p)}(z)| = \|T_{k \cdot \ell}^{A}(A)\|.$$
Summary

- We considered Chebyshev polynomials of matrices and showed general properties (shifts and scaling, alternation).

- We can relate Chebyshev polynomials for lemniscatic regions to those for certain block-Toeplitz matrices.
We considered Chebyshev polynomials of matrices and showed general properties (shifts and scaling, alternation).

We can relate Chebyshev polynomials for lemniscatic regions to those for certain block-Toeplitz matrices.

Open question: Is it possible to translate the problem

\[
\min_{p \in \mathcal{M}_m} \| p(A) \|
\]

into the problem

\[
\min_{p \in \mathcal{M}_m} \max_{z \in \Omega} |p(z)|
\]

where \(\Omega \) is a set in the complex plane associated with \(A \)?
Related papers

- V. Faber, J. Liesen and P. Tichý,
 [On Chebyshev polynomials of matrices, accepted for publication in SIMAX (2010).]

- K-C. Toh, N. L. Trefethen,
 [The Chebyshev polynomials of a matrix, SIMAX 20 (1999), no. 2, 400–419]

- A. Greenbaum and N. L. Trefethen,

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/~liesen
Related papers

- V. Faber, J. Liesen and P. Tichý,
 [On Chebyshev polynomials of matrices, accepted for publication in SIMAX (2010).]

- K-C. Toh, N. L. Trefethen,
 [The Chebyshev polynomials of a matrix, SIMAX 20 (1999), no. 2, 400–419]

- A. Greenbaum and N. L. Trefethen,

More details can be found at

http://www.cs.cas.cz/tichy
http://www.math.tu-berlin.de/~liesen

Thank you for your attention!