On a generalization of the concept of total positivity, based on the theory of cones Olga Y. Kushel (Minsk, Belarus)

Theorem (Gantmacher–Krein). If the matrix \mathbf{A} of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is totally positive (i.e. is positive together with all its minors of the *j*th order, where j = 2, ..., n), then all the eigenvalues of the operator A are positive, simple and different in modulus from each other:

$$\rho(A) = \lambda_1 > \lambda_2 > \ldots > \lambda_n > 0.$$

Moreover, the first eigenvector, corresponding to the greatest in modulus eigenvalue λ_1 is strictly positive, and the *j*th eigenvector e_j , corresponding to the *j*th in modulus eigenvalue λ_j , has exactly j - 1 changes of sign and no zero coordinates.

Theorem (Schoenberg). If the matrix \mathbf{A} of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is totally positive, then the following inequality is true for each non-zero vector $x \in \mathbb{R}^n$:

$$S^+(Ax) \le S^-(x),\tag{1}$$

where $S^{-}(x)$ is the number of sign changes in the sequence of the coordinates (x_1, \ldots, x_n) of the vector x, with zero coordinates discarded. $S^{+}(x)$ is the maximum number of sign changes in the sequence (x_1, \ldots, x_n) , where zero coordinates are arbitrarily assigned values ± 1 .

Exterior square of the space \mathbb{R}^n

The space of all bilinear functionals on $(\mathbb{R}^n)' \times (\mathbb{R}^n)'$ is called a *tensor square* of the space \mathbb{R}^n and denoted $\otimes^2 \mathbb{R}^n$. Its elements are called *tensors*.

Let x, y be arbitrary vectors from \mathbb{R}^n . Then the bilinear functional $x \otimes y : ((\mathbb{R}^n)' \times (\mathbb{R}^n)') \to \mathbb{R}$, which acts according to the rule

$$(x\otimes y)(f,g)=\langle x,f\rangle\langle y,g\rangle,$$

is called a *tensor product* of the vectors x, y. (Here the linear functionals $f, g \in (\mathbb{R}^n)'$ are considered as vectors from \mathbb{R}^n).

$$\otimes^2 \mathbb{R}^n = \mathbb{R}^{n^2}$$

The subspace of all antisymmetric tensors (i.e. all the tensors φ , for which $\varphi(f, g) = -\varphi(g, f)$, where $f, g \in \mathbb{R}^n$) is called an *exterior square* of the space \mathbb{R}^n and denoted $\wedge^2 \mathbb{R}^n$.

Let x, y be arbitrary vectors from \mathbb{R}^n . Then the bilinear functional $x \wedge y$, which is defined by the rule

$$x \wedge y = x \otimes y - y \otimes x,$$

is called an *exterior product* of the vectors x, y.

$$\wedge^2 \mathbb{R}^n = \mathbb{R}^{C_n^2}$$

The set of all exterior products of the form $\{e_i \land e_j\}$, where $1 \leq i < j \leq n$, is a canonical basis in the space $\wedge^2 \mathbb{R}^n$.

Let us define a map \mathcal{A} , which acts from the set of all 2-dimensional subspaces of \mathbb{R}^n to the set of 1dimensional subspaces (i.e. lines) of $\wedge^2 \mathbb{R}^n$ according to the following rule:

$$\mathcal{A}(L) = \{ t(x_1 \wedge x_2) \}_{t \in \mathbb{R}}, \qquad (2)$$

where L is a 2-dimensional subspace from \mathbb{R}^n , x_1 , x_2 are two arbitrary linearly independent vectors from L.

Conic sets in \mathbb{R}^n

A closed subset $K \subset \mathbb{R}^n$ is called a *proper cone*, if it is a convex cone (i.e. for any $x, y \in K$, $\alpha \geq 0$ we have x + y, $\alpha x \in K$), pointed $(K \cap (-K) = \{0\})$ and full $(int(K) \neq \emptyset)$.

A closed subset $T \subset \mathbb{R}^n$ is called a cone of rank k $(0 \le k \le n)$, if for every $x \in T$, $\alpha \in \mathbb{R}$ the element $\alpha x \in T$ and there is at least one k-dimensional subspace and no higher dimensional subspaces in T.

Example. Let $M_k = \{x \in \mathbb{R}^n : S^-(x) \leq k - 1\}$, i.e. the set of all vectors in \mathbb{R}^n , which have no more than k - 1 sign changes in the sequence of their non-zero coordinates. Then M_k is a cone of rank k for every $k = 1, \ldots, n$.

Given two convex cones $K_1 \subset \mathbb{R}^n$ and $K_2 \subset \mathbb{R}^{C_n^2}$. Let us define the set $T(K_1, K_2) \subset \mathbb{R}^n$ by the following way:

$$T(K_1, K_2) =$$

$$= \overline{\{x \in \mathbb{R}^n : \exists k \in (K_1 \cup (-K_1)) \setminus \{0\}, \text{ for which } k \land x \in (K_2 \cup (-K_2)) \setminus \{0\}\}}.$$
(3)

Lemma 1. Let $n \geq 3$, $K_1 \subset \mathbb{R}^n$ and $K_2 \subset \wedge^2 \mathbb{R}^n$ be two proper cones. Then the set $T(K_1, K_2)$, defined by formula (3), coincides with the closure of the set of all 2-dimensional subspaces $L \subset \mathbb{R}^n$, which satisfy the following conditions

1. The corresponding line $\mathcal{A}(L)$ belongs to $K_2 \cup (-K_2)$;

2. The intersection $L \cap K_1 \neq \{0\}$.

Theorem 1. Let K_1 be a proper cone in \mathbb{R}^n . Let K_2 be a proper cone in $\mathbb{R}^{C_n^2}$, which satisfy the following condition: $K_2 \subseteq K'_2$, where K'_2 is a proper cone, which is spanned on the vectors of the form $e'_i \wedge e'_j$ $(1 \leq i, j \leq n)$, where e'_1, \ldots, e'_n are linearly independent vectors from \mathbb{R}^n . Then the set $T(K_1, K_2)$, if it is nonempty, is a cone of rank 2.

Generalized strictly 2-totally positive operators

Let $K \subset \mathbb{R}^n$ be a proper cone. A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is called *K*-positive or positive with respect to the cone K if $A(K \setminus \{0\}) \subseteq int(K)$. In the case of $K = \mathbb{R}^n_+$ K-positive operators are called simply positive.

Theorem (Generalized Perron). Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be K-positive with respect to a proper cone $K \subset \mathbb{R}^n$. Then:

- 1. The spectral radius $\rho(A) > 0$ is a simple positive eigenvalue of the operator A, different in modulus from the other eigenvalues.
- 2. The eigenvector x_1 , corresponding to the eigenvalue $\lambda_1 = \rho(A)$, belongs to int(K).
- 4. The functional x_1^* , corresponding to the eigenvalue $\lambda_1 = \rho(A)$, satisfy the inequality $x_1^*(x) > 0$ for every nonzero $x \in K$.

A linear operator $\wedge^2 A$, which acts in the space $\wedge^2 \mathbb{R}^n$ according to the rule:

$$(\wedge^2 A)(x \wedge y) = Ax \wedge Ay,$$

is called the exterior square of the operator A.

If the operator A is given by a matrix $\mathbf{A} = \{a_{ij}\}_{i,j=1}^n$ in the basis e_1, \ldots, e_n , then the matrix of its exterior square $\wedge^2 A$ in the basis $\{e_i \wedge e_j\}$, where $1 \leq i < j \leq n$, coincides with the second compound matrix $\mathbf{A}^{(2)}$ of the initial matrix \mathbf{A} , i.e. with the matrix which consists of all the minors of the second order $A\begin{pmatrix} i & j \\ k & l \end{pmatrix}$, where $1 \leq i < j \leq n$, $1 \leq k < l \leq n$, of the initial $n \times n$ matrix \mathbf{A} .

A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is called (K_1, K_2) strictly totally positive, if the inclusion $A(K_1 \setminus \{0\}) \subseteq$ $\operatorname{int}(K_1)$ is true for some proper cone $K_1 \subset \mathbb{R}^n$, and the inclusion $(A \wedge A)(K_2 \setminus \{0\}) \subseteq \operatorname{int}(K_2)$ is true for some proper cone $K_2 \subset \mathbb{R}^{C_n^2}$.

In the case, when $K_1 = \mathbb{R}^n_+$, $K_2 = \mathbb{R}^{C_n^2}_+$, the definition, given above, coincides with the classical definition of 2-strictly totally positive operator, given by F.R. Gantmacher and M.G. Krein.

Gantmacher–Krein theorem and variational diminishing property of generalized strictly 2totally positive operators

Theorem 2. Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be strictly K_1, K_2 -totally positive. Then the following inclusion is true:

 $A(T(K_1, K_2)) \subseteq T(K_1, K_2).$

Theorem 3. Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be strictly K_1, K_2 -totally positive. Then the operator A has two positive simple eigenvalues, different in modulus from each other and from the rest of eigenvalues:

 $0 \leq \ldots \leq |\lambda_3| < \lambda_2 < \lambda_1.$

The first eigenvector x_1 corresponding to the maximal eigenvalue λ_1 , belongs to $int(K_1)$. The second eigenvector x_2 , corresponding to the second in modulus eigenvalue λ_2 , belongs to $int(T(K_1, K_2) \setminus K_1)$.