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Theorem (Gantmacher–Krein). If the matrix A
of a linear operator A : Rn → Rn is totally positive
(i.e. is positive together with all its minors of the jth
order, where j = 2, . . . , n), then all the eigenvalues
of the operator A are positive, simple and different in
modulus from each other:

ρ(A) = λ1 > λ2 > . . . > λn > 0.

Moreover, the first eigenvector, corresponding to the
greatest in modulus eigenvalue λ1 is strictly positive,
and the jth eigenvector ej, corresponding to the jth
in modulus eigenvalue λj, has exactly j − 1 changes
of sign and no zero coordinates.

Theorem (Schoenberg). If the matrix A of a
linear operator A : Rn → Rn is totally positive,
then the following inequality is true for each non-zero
vector x ∈ Rn:

S+(Ax) ≤ S−(x), (1)

where S−(x) is the number of sign changes in the
sequence of the coordinates (x1, . . . , xn) of the vector
x, with zero coordinates discarded. S+(x) is the
maximum number of sign changes in the sequence
(x1, . . . , xn), where zero coordinates are arbitrarily
assigned values ±1.
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Exterior square of the space Rn

The space of all bilinear functionals on (Rn)′×(Rn)′

is called a tensor square of the space Rn and denoted
⊗2Rn. Its elements are called tensors.

Let x, y be arbitrary vectors from Rn. Then the
bilinear functional x⊗y : ((Rn)′×(Rn)′)→ R, which
acts according to the rule

(x⊗ y)(f, g) = 〈x, f〉〈y, g〉,

is called a tensor product of the vectors x, y. (Here
the linear functionals f, g ∈ (Rn)′ are considered as
vectors from Rn).

⊗2Rn = Rn2

The subspace of all antisymmetric tensors (i.e. all
the tensors ϕ, for which ϕ(f, g) = −ϕ(g, f ), where
f, g ∈ Rn) is called an exterior square of the space
Rn and denoted ∧2Rn.
Let x, y be arbitrary vectors from Rn. Then the

bilinear functional x∧ y, which is defined by the rule

x ∧ y = x⊗ y − y ⊗ x,

is called an exterior product of the vectors x, y.
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∧2Rn = RC2
n

The set of all exterior products of the form {ei∧ej},
where 1 ≤ i < j ≤ n, is a canonical basis in the space
∧2Rn.
Let us define a map A, which acts from the set

of all 2-dimensional subspaces of Rn to the set of 1-
dimensional subspaces (i.e. lines) of ∧2Rn according
to the following rule:

A(L) = {t(x1 ∧ x2)}t∈R, (2)

where L is a 2-dimensional subspace from Rn, x1, x2

are two arbitrary linearly independent vectors from
L.
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Conic sets in Rn

A closed subset K ⊂ Rn is called a proper cone, if
it is a convex cone (i.e. for any x, y ∈ K, α ≥ 0 we
have x + y, αx ∈ K), pointed (K ∩ (−K) = {0})
and full (int(K) 6= ∅).

A closed subset T ⊂ Rn is called a cone of rank k
(0 ≤ k ≤ n), if for every x ∈ T , α ∈ R the element
αx ∈ T and there is at least one k-dimensional subspace
and no higher dimensional subspaces in T .
Example. Let Mk = {x ∈ Rn : S−(x) ≤ k − 1},

i.e. the set of all vectors in Rn, which have no more
than k− 1 sign changes in the sequence of their non-
zero coordinates. Then Mk is a cone of rank k for
every k = 1, . . . , n.

Given two convex cones K1 ⊂ Rn and K2 ⊂ RC2
n.

Let us define the set T (K1, K2) ⊂ Rn by the following
way:

T (K1, K2) =

= {x ∈ Rn : ∃ k ∈ (K1 ∪ (−K1)) \ {0}, for which k ∧ x ∈ (K2 ∪ (−K2)) \ {0}}. (3)
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Lemma 1. Let n ≥ 3, K1 ⊂ Rn and K2 ⊂ ∧2Rn

be two proper cones. Then the set T (K1, K2), defined
by formula (3), coincides with the closure of the set
of all 2-dimensional subspaces L ⊂ Rn, which satisfy
the following conditions

1. The corresponding lineA(L) belongs toK2∪(−K2);

2. The intersection L ∩K1 6= {0}.
Theorem 1. Let K1 be a proper cone in Rn. Let K2

be a proper cone in RC2
n, which satisfy the following

condition: K2 ⊆ K ′2, where K ′2 is a proper cone,
which is spanned on the vectors of the form e′i ∧ e′j
(1 ≤ i, j ≤ n), where e′1, . . . , e′n are linearly independent
vectors from Rn. Then the set T (K1, K2), if it is
nonempty, is a cone of rank 2.
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Generalized strictly 2-totally positive operators
Let K ⊂ Rn be a proper cone. A linear operator

A : Rn → Rn is called K-positive or positive with
respect to the cone K if A(K \ {0}) ⊆ int(K). In
the case of K = Rn

+ K-positive operators are called
simply positive.
Theorem (Generalized Perron). Let a linear operator

A : Rn → Rn be K-positive with respect to a proper
cone K ⊂ Rn. Then:

1. The spectral radius ρ(A) > 0 is a simple positive
eigenvalue of the operator A, different in modulus
from the other eigenvalues.

2. The eigenvector x1, corresponding to the eigenvalue
λ1 = ρ(A), belongs to int(K).

4. The functional x∗1, corresponding to the eigenvalue
λ1 = ρ(A), satisfy the inequality x∗1(x) > 0 for
every nonzero x ∈ K.

A linear operator ∧2A, which acts in the space ∧2Rn

according to the rule:

(∧2A)(x ∧ y) = Ax ∧ Ay,

is called the exterior square of the operator A.
If the operatorA is given by a matrixA = {aij}ni,j=1

in the basis e1, . . . , en, then the matrix of its exterior
square ∧2A in the basis {ei ∧ ej}, where 1 ≤ i <
j ≤ n, coincides with the second compound matrix
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A(2) of the initial matrix A, i.e. with the matrix
which consists of all the minors of the second order
A

(
i j
k l

)
, where 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n, of

the initial n× n matrix A.
A linear operator A : Rn → Rn is called (K1, K2)-

strictly totally positive, if the inclusion A(K1\{0}) ⊆
int(K1) is true for some proper cone K1 ⊂ Rn, and
the inclusion (A∧A)(K2 \ {0}) ⊆ int(K2) is true for
some proper cone K2 ⊂ RC2

n.
In the case, whenK1 = Rn

+,K2 = RC2
n

+ , the definition,
given above, coincides with the classical definition
of 2-strictly totally positive operator, given by F.R.
Gantmacher and M.G. Krein.
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Gantmacher–Krein theorem and variational
diminishing property of generalized strictly 2-
totally positive operators

Theorem 2. Let a linear operator A : Rn → Rn

be strictly K1, K2-totally positive. Then the following
inclusion is true:

A(T (K1, K2)) ⊆ T (K1, K2).

Theorem 3. Let a linear operator A : Rn → Rn

be strictly K1, K2-totally positive. Then the operator
A has two positive simple eigenvalues, different in
modulus from each other and from the rest of eigenvalues:

0 ≤ . . . ≤ |λ3| < λ2 < λ1.

The first eigenvector x1 corresponding to the maximal
eigenvalue λ1, belongs to int(K1). The second eigenvector
x2, corresponding to the second in modulus eigenvalue
λ2, belongs to int(T (K1, K2) \K1).
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