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Theorem (Gantmacher—Krein). If the matriz A
of a linear operator A : R" — R" is totally positive
(i.e. is positive together with all its minors of the jth
order, where j =2, ..., n), then all the eigenvalues
of the operator A are positive, simple and different in
modulus from each other:

,0(14):)\1>)\2>...>)\n>0.

Moreover, the first eigenvector, corresponding to the
greatest in modulus eigenvalue A\ is strictly positive,
and the jth eigenvector e;, corresponding to the jth
in modulus eigenvalue A;, has exactly j — 1 changes
of sign and no zero coordinates.

Theorem (Schoenberg). If the matriv A of a
linear operator A : R" — R" is totally positive,
then the following inequality is true for each non-zero
vector x € R":

S*(Az) < S~ (), (1)

where S~ (x) is the number of sign changes in the
sequence of the coordinates (x1, ..., x,) of the vector
x, with zero coordinates discarded. S™(x) is the
maximum number of sign changes in the sequence
(x1, ..., x,), where zero coordinates are arbitrarily
assigned values £1.



Exterior square of the space R"

The space of all bilinear functionals on (R™) x (R™)’
is called a tensor square of the space R™ and denoted
®?R". Its elements are called tensors.

Let x, y be arbitrary vectors from R". Then the
bilinear functional z®y : ((R") x (R")") — R, which
acts according to the rule

(z @y)(f,9) = (%, [){Y,9),

is called a tensor product of the vectors x, y. (Here
the linear functionals f,¢g € (R")" are considered as
vectors from R").

®2Rn _ RTLQ

The subspace of all antisymmetric tensors (i.e. all
the tensors ¢, for which ¢(f, g) = —p(g, f), where
f, g € R") is called an exterior square of the space
R" and denoted A?R".

Let x, y be arbitrary vectors from R". Then the
bilinear functional x Ay, which is defined by the rule

TNYy=rQy—yQu,

is called an exterior product of the vectors x, v.
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/\QRTL _ RC%

The set of all exterior products of the form {e; Ae;},
where 1 <17 < 5 < n, is a canonical basis in the space
AR™.

Let us define a map A, which acts from the set
of all 2-dimensional subspaces of R" to the set of 1-
dimensional subspaces (i.e. lines) of A*R" according
to the following rule:

A(L) = {t(x1 A 22) }1er, (2)

where L is a 2-dimensional subspace from R", 1, 29

are two arbitrary linearly independent vectors from
L.



Conic sets 1n R"

A closed subset K C R" is called a proper cone, if
it is a convex cone (i.e. for any z,y € K, a > 0 we
have x + vy, ax € K), pointed (K N (—K) = {0})
and full (int(K) #£ 0).

A closed subset T' C R" is called a cone of rank k
(0 <k <mn),if for every z € T, o € R the element
axr € 1" and there is at least one k-dimensional subspace
and no higher dimensional subspaces in 7.

Example. Let M}, = {x e R" : S7(z) < k — 1},
i.e. the set of all vectors in R", which have no more
than £ — 1 sign changes in the sequence of their non-
zero coordinates. Then M is a cone of rank k for
every k=1, ..., n.

Given two convex cones K1 C R" and Ky C R
Let us define the set T'( K7, Ks) C R” by the following
way:

T(Ky, Ky) =
—TreR ke (K U(—K))\ {0}, for which k Az € (KU (—K2))\ {0}].  (3)




Lemma 1. Letn > 3, K; C R” and Ky C A?’R"
be two proper cones. Then the set T(Ky, Ks), defined
by formula (3), coincides with the closure of the set
of all 2-dimensional subspaces L C R"™, which satisty
the following conditions

1. The corresponding line A(L) belongs to KoU(—Ks);
2. The intersection L N Ky # {0}.

Theorem 1. Let K1 be a proper cone in R". Let Ky
be a proper cone in RC%, which satisfy the following
condition. Ky C K}, where K is a proper cone,
which is spanned on the vectors of the form e; A €/
(1 <i,57 <mn), whereey, ..., e arelinearly independent

vectors from R™. Then the set T(Ky, Ks), if it is
nonempty, is a cone of rank 2.



Generalized strictly 2-totally positive operators

Let K C R"™ be a proper cone. A linear operator
A R" — R" is called K-positive or positive with
respect to the cone K it A(K \ {0}) C int(K). In
the case of K = R’} K-positive operators are called
simply positive.

Theorem (Generalized Perron). Let a linear operator
A R" — R" be K-positive with respect to a proper
cone K C R". Then.

1. The spectral radius p(A) > 0 is a simple positive
eigenvalue of the operator A, different in modulus
from the other eigenvalues.

2. The eigenvector x1, corresponding to the eigenvalue
A1 = p(A), belongs to int(K).

4. The functional 7, corresponding to the eigenvalue
A1 = p(A), satisfy the inequality x§(x) > 0 for
every nonzero x € K.

A linear operator A2A, which acts in the space A?R"
according to the rule:

(AN2A)(z A y) = Az A Ay,

is called the exterior square of the operator A.

[f the operator A is given by a matrix A = {a;;}7;_,
in the basis ey, ..., e,, then the matrix of its exterior
square A*A in the basis {e; A €;}, where 1 < i <

j < n, coincides with the second compound matrix
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A® of the initial matrix A, i.e. with the matrix
Which consists of all the minors of the second order

A(;‘;),Wherelgi<j§n, 1<k<l<n,of

the initial n X n matrix A.

A linear operator A : R" — R"™ is called (K7, K3)-
strictly totally positive, if the inclusion A(K7\{0}) C
int(K7) is true for some proper cone K; C R", and
the inclusion (AA A)(K5\{0}) C int(Ky) is true for
some proper cone Ky C RC,

In the case, when I} = R" | Ky = Rg’}%, the definition,
given above, coincides with the classical definition
of 2-strictly totally positive operator, given by F.R.
Gantmacher and M.G. Krein.



Gantmacher—Krein theorem and variational
diminishing property of generalized strictly 2-
totally positive operators

Theorem 2. Let a linear operator A : R" — R”
be strictly Ky, Ko-totally positive. Then the following
inclusion 1s true:

A(T (K, Ks)) € T(Kq, Ko).

Theorem 3. Let a linear operator A : R" — R”
be strictly Ky, Ko-totally positive. Then the operator
A has two positive simple eigenvalues, different in
modulus from each other and from the rest of eigenvalues:

OS...§|)\3‘<>\2<>\1.

The first eigenvector x1 corresponding to the maximal
eigenvalue A1, belongs to int(Ky). The second eigenvector
X9, corresponding to the second in modulus eigenvalue
Ao, belongs to int(T(Kq, Ks) \ K7).



