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1.INTRODUCTION
De�nitions and basic properties

a� b = max(a, b)

a
 b = a+ b

a, b 2 R := R[ f�∞g

a� b = max(a, b)

a
 b = ab

a, b 2 R+

Isomorphism : x �! 2x

�nite$ positive
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1.INTRODUCTION
De�nitions and basic properties

Basic properties (ε = �∞):

a� b = b� a
(a� b)� c = a� (b� c)

a� ε = a = ε� a

a
 b = b
 a
(a
 b)
 c = a
 (b
 c)

a
 ε = ε = ε
 a
a
 0 = a = 0
 a

(a� b)
 c = a
 c � b
 c
a� b = a or b
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1.INTRODUCTION
De�nitions and basic properties

Extension to matrices and vectors:

A� B = (aij � bij )
A
 B =

�
∑�
k aik 
 bkj

�
α
 A = (α
 aij )
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1.INTRODUCTION
De�nitions and basic properties

A� B = B � A
(A� B)� C = A� (B � C )

A
 ε = ε = ε
 A

[not A
 B = B 
 A]
(A
 B)
 C = A
 (B 
 C )

A
 I = A = I 
 A

(A� B)
 C = A
 C � B 
 C
A
 (B � C ) = A
 B � A
 C
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1.INTRODUCTION
Example 1.1

x1

x2

x3

a1

a2

x3 = max (x1 + a1, x2 + a2)

= a1 
 x1 � a2 
 x2

= (a1, a2)

�
x1
x2

�
= aT 
 x

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



1.INTRODUCTION
Example 1.2

x1
d1

d2

x2

b1

b2

t11

t21

t12

t22

U

V

W

b1 = max (x1 + d1 + t11, x2 + d2 + t12)
b2 = max (x1 + d1 + t21, x2 + d2 + t22)

�
b = A
 x
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2. FEASIBILITY
Simple scheduling

Machines M1, ...,Mn produce parts for products P1, ...,Pm

xj . . . starting time of machine Mj

aij . . . time Mj needs to prepare the component for Pi
All parts for Pi will be ready at time
max (x1 + ai1, . . . , xn + ain)
b1, ..., bm ... required completion times for products
P1, ...,Pm
Then the starting times should satisfy
max (x1 + ai1, . . . , xn + ain) = bi (i = 1, ...,m)
In max-notation: ∑�

j aij 
 xj = bi (i = 1, . . . ,m)
Equivalently: A
 x = b
A
 x ... vector of actual completion times
If no solution then A
 x � b but as tight as possible
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2. FEASIBILITY
Simple scheduling

A ... Production/transportation matrix

b ... Vector of required completion times

x ... Vector of starting times

Given A and b, �nd x so that

A
 x � b

is satis�ed as tightly as possible

Let x = A� 
0 b, where A� = �AT and 
0 is in min-algebra
Then A
 x � b and A
 x is the best Chebyshev
approximation of b
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2. FEASIBILITY

Solving A
 x = b

b

 A⊗(A*⊗′ b)

 A⊗x

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



2. FEASIBILITY
Synchronisation scheduling

If two such processes are given:

A
 x = b
B 
 y = c
... and they have to be synchronised (b = c):

A
 x = B 
 y
Alternating Method
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2. FEASIBILITY

Solving A
 x = B 
 y

z0=A⊗x0

z1 = B⊗(B*⊗′ z0)

 B⊗y
 A⊗(A*⊗′ z1)

 A⊗x

 z3

 z4

 z5

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



2. FEASIBILITY
Overview

Find x so that A
 x � b is satis�ed as tightly as possible
(feasibility) ... O

�
n2
�

Find x so that the range norm of A
 x is min/max ... O
�
n2
�

Find π so that A
 x � b (π) can be satis�ed as tightly as
possible... NP-complete

A
 x = B 
 y (synchronisation of two processes) ...
Alternating Method (pseudopolynomial)

A
 x = B 
 x ... can be transformed to A
 x = B 
 y
A
 x = λ
 B 
 x (linked synchronisation, x = λ
 y)
One-sided problems easier than in LA, two-sided harder
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3. REACHABILITY
Multi-processor interactive system (MPIS)

Machines M1, ...,Mn work interactively and in stages

xi (r) . . . starting time of the r th stage on machine Mi

(i = 1, . . . , n; r = 0, 1, ...)
aij . . . time Mj needs to prepare the component for Mi

xi (r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain)
(i = 1, . . . , n; r = 0, 1, ...)
xi (r + 1) = ∑�

k aik 
 xk (r) (i = 1, . . . , n; r = 0, 1, ...)
x(r + 1) = A
 x(r) (r = 0, 1, . . .)
A : x(0)! x(1)! x(2)! ...
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3. REACHABILITY
Example 3.1

A : x(0)! x(1)! x(2)! ...

A =
�
2 3
1 1

�
:
�
1
0

�
!
�
3
2

�
!
�
5
4

�
!
�
7
6

�
! ...

M1

M2

λ = 2, r0 = 0
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3. REACHABILITY
Example 3.2

A =
�
2 3
1 1

�
:
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0
0

�
!
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3
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5
4
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7
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�
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3. REACHABILITY
Example 3.3

A =
�
1 2
2 1

�
:
�
1
0

�
!
�
2
3

�
!
�
5
4

�
!
�
6
7

�
!�

9
8

�
! ...

M1

M2
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3. REACHABILITY
Steady regime

Will the MPIS work in/reach a steady regime (that is, will it
move forward in regular steps)?

Equivalently, is there a λ and an r0 such that

x(r + 1) = λ
 x(r) (r � r0)?

x(r + 1) = A
 x(r) (r = 0, 1, . . .)

MPIS reaches a steady regime if and only if for some λ and r ,
x(r) is a solution to

A
 x = λ
 x
Since

x(r) = A
 x(r � 1) = A2 
 x(r � 2) = . . . = Ar 
 x(0),
a steady regime is reached if and only if Ar 
 x(0) �hits� an
eigenvector of A for some r .
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3. REACHABILITY
Problem formulation

Given: A = (aij ) 2 R
n�n

Problem 1: Find a λ 2 R (eigenvalue) and an x 2 R
n

(eigenvector) so that

A
 x = λ
 x .

Problem 2: Given an x 2 R
n
, is there a k such that Ak 
 x

is an eigenvector of A?

Problem 3: Is A robust? (That is for every x 2 R
n
, x 6= ε,

there is a k such that Ak 
 x is an eigenvector of A)
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3. REACHABILITY
Overview

A
 x = λ
 x (steady regime immediately) ... O
�
n3
�

Ak+1 
 x = λ
 Ak 
 x , k � k0 (reachability of a steady
regime from a given start time vector) ... Sergeev:
O
�
n3 log n

�
Robustness (reachability of a steady regime from any start
time vector) ... polynomial algorithm

Max-linear programming ... pseudopolynomial algorithm

cT 
 x �! min (or max)

s.t.
A
 x � c = B 
 x � d
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3. REACHABILITY
Key players

A = (aij ) 2 R
n�n
,N = f1, ..., ng

DA = (N, f(i , j); aij > εg, (aij )) ... digraph associated with A
Maximum cycle mean of A :

λ(A) = max
�
ai1 i2 + ai2 i3 + ...+ aik i1

k
; i1, ..., ik 2 N

�
Γ (A) = A� A2 � ...� An (metric matrix)
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3. REACHABILITY
Eigenproblem

Given A, �nd all λ and x 6= ε such that A
 x = λ
 x

For any A, λ(A) is

an eigenvalue of A
the greatest eigenvalue of A
the only eigenvalue of A whose corresponding eigenvectors
may be �nite
the unique eigenvalue if A is irreducible

Every eigenvalue of A is the maximum cycle mean for some
principal submatrix

If A is irreducible then the basis of the eigenspace can (easily)

be found among the columns of Γ
�
(λ (A))�1 
 A

�
with zero

diagonal entries
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3. REACHABILITY
Eigenproblem

If A is reducible - Frobenius Normal Form (FNF):

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA , A11, ...,Arr irreducible
N1,N2, ...,Nr ... node sets of SCC of DA
Ni �! Nj ... there is a path from Ni to Nj in DA
Λ(A) = fλ(Aii );λ(Aii ) � λ(Ajj ) if Nj ! Nig (Gaubert,
Bapat)

Ni is called spectral if λ(Aii ) � λ(Ajj ) whenever Nj ! Ni
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3. REACHABILITY
Eigenproblem

A =

0BBBBBB@

0 3
1 1

4
0 0 1

-1 2
1 5

1CCCCCCA

λ(A11) = 2,λ(A22) = 4,λ(A33) = 2,λ(A44) = 5, r = 4

Λ(A) = f2, 5g
λ(A) = 5

N1,N4 are spectral; N2,N3 are not

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



3. REACHABILITY
Eigenproblem

A =

0BBBBBB@

0 3
1 1

4
0 0 1

-1 2
1 5

1CCCCCCA
λ(A11) = 2,λ(A22) = 4,λ(A33) = 2,λ(A44) = 5, r = 4

Λ(A) = f2, 5g
λ(A) = 5

N1,N4 are spectral; N2,N3 are not

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



3. REACHABILITY
Eigenproblem

A =

0BBBBBB@

0 3
1 1

4
0 0 1

-1 2
1 5

1CCCCCCA
λ(A11) = 2,λ(A22) = 4,λ(A33) = 2,λ(A44) = 5, r = 4

Λ(A) = f2, 5g

λ(A) = 5

N1,N4 are spectral; N2,N3 are not

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



3. REACHABILITY
Eigenproblem

A =

0BBBBBB@

0 3
1 1

4
0 0 1

-1 2
1 5

1CCCCCCA
λ(A11) = 2,λ(A22) = 4,λ(A33) = 2,λ(A44) = 5, r = 4

Λ(A) = f2, 5g
λ(A) = 5

N1,N4 are spectral; N2,N3 are not

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



3. REACHABILITY
Eigenproblem

A =

0BBBBBB@

0 3
1 1

4
0 0 1

-1 2
1 5

1CCCCCCA
λ(A11) = 2,λ(A22) = 4,λ(A33) = 2,λ(A44) = 5, r = 4

Λ(A) = f2, 5g
λ(A) = 5

N1,N4 are spectral; N2,N3 are not

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



4.1 ROBUSTNESS
Cyclicity

Cyclicity of a strongly connected digraph = g.c.d. of the
lengths of its cycles

Cyclicity of a digraph = l.c.m. of cyclicities of its SSC

Let A 2 R
n�n

Critical cycle of A: any cycle whose mean is λ (A)
Critical digraph of A, C (A), consists of nodes and arcs on
critical cycles of A
Cyclicity of a matrix A, σ (A) , is the cyclicity of C (A)
A is primitive if σ (A) = 1
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4.1 ROBUSTNESS
Irreducible matrices

(Cyclicity Theorem, Cohen et al) Every irreducible matrix A is
ultimately periodic with period σ (A), that is σ (A) is the least
integer p for which there exists a positive integer k0 such that:

Ak+p = (λ(A))p 
 Ak for all k � k0.

If A 6= ε is irreducible and primitive:

Ak+1 = (λ(A))
 Ak for all k � k0
Ak+1 
 x = (λ(A))
 Ak 
 x 6= ε for all k � k0 and
x 2 R

n
, x 6= ε

An irreducible matrix A 6= ε is robust if and only if A is
primitive
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4.1 ROBUSTNESS
Reducible matrices

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA ... FNF

N1, ...,Nr ... classes of A

Aii = A [Ni ] , i = 1, ..., r

Ni is called trivial if Aii is the 1� 1 matrix (ε)

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



4.1 ROBUSTNESS
Reducible matrices

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA ... FNF

N1, ...,Nr ... classes of A

Aii = A [Ni ] , i = 1, ..., r

Ni is called trivial if Aii is the 1� 1 matrix (ε)

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



4.1 ROBUSTNESS
Reducible matrices

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA ... FNF

N1, ...,Nr ... classes of A

Aii = A [Ni ] , i = 1, ..., r

Ni is called trivial if Aii is the 1� 1 matrix (ε)

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



4.1 ROBUSTNESS
Reducible matrices

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA ... FNF

N1, ...,Nr ... classes of A

Aii = A [Ni ] , i = 1, ..., r

Ni is called trivial if Aii is the 1� 1 matrix (ε)

P.Butkovic University of Birmingham Applied Linear Algebra, Novi Sad, May 2010



4.1 ROBUSTNESS
Reducible matrices

Robustness criterion:

Theorem (PB, Cuninghame-Green, Gaubert)

If A 2 R
n�n

has no ε column, then A is robust if and only if

Every non-trivial class is spectral and primitive

λ(Aii ) = λ(Ajj ) if Ni ,Nj are non-trivial, Ni 9 Nj and
Nj 9 Ni
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4.1 ROBUSTNESS
Reducible matrices - Example 4.1

A =

0@ 2 ε ε
ε 1 ε
0 0 0

1A

r = 3,Λ(A) = f0, 1, 2g,Nj = fjg, j = 1, 2, 3

A :

0@ 0
0
0

1A �!

0@ 2
1
0

1A �!

0@ 4
2
2

1A �!

0@ 6
3
4

1A �!

0@ 8
4
6

1A �! ...

will never reach an eigenvector

Note: N1 9 N2 and N2 9 N1 but λ(N1) 6= λ(N2)
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4.1 ROBUSTNESS
Reducible matrices - Example 4.2

A =

0@ 2 ε ε
ε ε ε
0 0 0

1A

r = 3,Λ(A) = f0, 2g,Nj = fjg, j = 1, 2, 3
A is robust

A :

0@ 0
0
0

1A �!

0@ 2
ε
0

1A �!

0@ 4
ε
2

1A �!

0@ 6
ε
4

1A �! ...
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4.1 ROBUSTNESS
Reducible matrices

Example of the condensation digraph of a robust matrix with
λ1 < λ2 < λ3 < λ4 :

λ4 λ4

λ3

λ2 λ2λ2

λ1 λ1
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4.2 Generalised eigenproblem (GEP)
Solvable special cases

A
 x = λ
 B 
 x , A,B 2 R
m�n

Λ(A,B) ... set of generalised eigenvalues
(Sergeev) Any union of closed real intervals is Λ(A,B) for
some A and B
V (A,B) ... set of generalised eigenvectors
Special cases (A and B �nite):

(Binding & Volkmer) (A,B) and (AT ,BT ) solvable =)
Λ(A,B) = fλg = Λ(AT ,BT ) for some λ
A and B symmetric =) jΛ(A,B)j � 1
Every common eigenvector of A and B (if any) is a generalised
eigenvector for A and B
(Schneider) A and B commute =) A and B have a common
eigenvector
A and B commute =) Λ(A,B) = fλg = Λ(AT ,BT ) for
some λ
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4.2 Generalised eigenproblem (GEP)
Regularisation

A,B 2 Rn�n

C = (cij ) = (aij 
 b�1ij )
Λ(A,B) � [maxi minj cij ,mini maxj cij ]
L = fλ; (9i , j) aij = λ
 bijg , jLj � n2

I = [`, u] is called regular if L\ I = f`, ug
Wlog: λ 2 I , that is (8i , j 2 N) aij 6= λ
 bij
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4.2 Generalised eigenproblem (GEP)
Symmetrised semirings

S = R�R

(a, a0)� (b, b0) = (a� b, a0 � b0)
(a, a0)
 (b, b0) = (a
 b� a0 
 b0, a
 b0 � a0 
 b)

� (a, b) = (b, a)

j(a, b)j = a� b
x � y = x � (�y) for x , y 2 S

Relation of balance: (a, a0)5 (b, b0) i¤ a� b0 = a0 � b
(a, b) is sign-positive [sign-negative] i¤ a > b [a < b] or
a = b = ε

(a, b) is balanced i¤ a = b, otherwise it is called unbalanced
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4.2 Generalised eigenproblem (GEP)
Determinant and permanent

For A = (aij ) 2 Rn�n

maper(A)
df
= ∑

π

�∏
i



ai ,π(i ) = max

π
∑
i
ai ,π(i )

ap(A) =

(
π 2 Pn;maper(A) = ∑

i
ai ,π(i )

)
For C = (cij ) 2 Sn�n

det(C ) = ∑�
π

�
sgn (π)
∏


i ci ,π(i )
�
=
�
d+ (C ) , d� (C )

�
jdet (C )j = d+ (C )� d� (C ) = maper (jC j)
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4.2 Generalised eigenproblem (GEP)
A necessary condition for generalised eigenvalues

�
9x 2 R

n
, x 6= ε

�
A
 x = B 
 x ()

(9y 2 Sn, y 6= ε, y sign positive) (A�B)
 y 5 ε

(M.Plus) Let C 2 Sn�n. Then the system of balances
C 
 y 5 ε has a signed non-trivial solution if and only if
det(C )5 ε.
(PB, Gaubert) Let A,B 2 R

n�n
and C = A�B. Then a

necessary condition that the system A
 x = B 
 x have a
non-trivial solution is that C has balanced determinant.
Let A,B 2 R

n�n
and C (λ) = A� λ
 B. Then a necessary

condition that the system A
 x = λ
 B 
 x have a
non-trivial solution is that C (λ) has balanced determinant,
that is if det(C (λ)) = (d+ (λ) , d� (λ)) :

λ 2 Λ(A,B) =) d+ (λ) = d� (λ)
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4.2 Generalised eigenproblem (GEP)
Solving the necessary condition

d+ (λ)� d� (λ) = jdet (C (λ))j = maper (jC (λ)j)

d+ (λ) and d� (λ) are maxpolynomials in λ (hence piecewise
linear and convex functions) containing at most n+ 1 powers
of λ between 0 and n.
It is not known how to �nd d+ (λ) and d� (λ) individually but

jC (λ)j = (aij � λ
 bij ) = (cij (λ))
and maper (jC (λ)j) = d+ (λ)� d� (λ) can be found in
< O(n4) time.
For �nding ALL values of λ 2 I satisfying d+ (λ) = d� (λ)
we now only need to check this for the corners of
d+ (λ)� d� (λ) and one value between two consecutive
corners
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4.2 Generalised eigenproblem (GEP)

Narrowing the search for generalised eigenvalues
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4.2 Generalised eigenproblem (GEP)

Narrowing the search for generalised eigenvalues

C = (cij ) 2 Sn�n �! C̃ = (c̃ij ) is (0, 1,�1) satisfying

c̃ij = 1 if j = π (i) for π 2 ap(jC j) and cij is sign-positive,
c̃ij = �1 if j = π (i) for π 2 ap(jC j) and cij is sign-negative,
c̃ij = 0 else.

Let C 2 Sn�n. A necessary condition that C have unbalanced
determinant is that C̃ is SNS. If C has no balanced entry then
this condition is also su¢ cient.

If λ 2 I then A� λ
 B has no balanced entry.
Let A,B 2 Rn�n and C (λ) = A� λ
 B,λ 2 I . Then C (λ)
is balanced if and only if C̃ (λ) is not SNS.
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4.2 Generalised eigenproblem (GEP)

Narrowing the search for generalised eigenvalues

CONCLUSION:
The set of all λ satisfying d+ (λ) = d� (λ) can be found in
polynomial time.
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