Perron-Frobenius Theory and Positivity in Linear Algebra

Michael Tsatsomeros

Washington State University ALA - Novi Sad 2010 - In honour of Hans Schneider

May 26, 2010

Michael Tsatsomeros Perron-Frobenius Theory and Positivity in Linear Algebra

(ロ) (四) (三) (三)

Perron-Frobenius Theorem

Hans Schneider - Age $1 \pm \epsilon$ Generalizations Toward a Converse Perron-Frobenius property Challenges

Oskar Perron (1880-1975)

Georg Frobenius (1849-1917)

Theorem (Perron-Frobenius)

Let A be a square matrix with nonnegative entries. Then the largest in modulus eigenvalue of A is nonnegative and has a nonnegative eigenvector. That is,

$$Ax = \rho(A)x,$$

where $x \neq 0$ is an entrywise nonnegative vector and

$$\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}.$$

イロン イヨン イヨン イヨン

On the origins of the Perron-Frobenius [Hawkins, 2008]

• **Perron's** Habilitationsschrift (1905): Perron's Theorem for **positive** matrices. Used in his masterful work on continued fractions (1907).

On the origins of the Perron-Frobenius [Hawkins, 2008]

- **Perron's** Habilitationsschrift (1905): Perron's Theorem for **positive** matrices. Used in his masterful work on continued fractions (1907).
- Perron's 1907 Mathematische Annalen paper (Towards the Theory of Matrices): challenges for a purely algebraic (limit-free) proof.

On the origins of the Perron-Frobenius [Hawkins, 2008]

- **Perron's** Habilitationsschrift (1905): Perron's Theorem for **positive** matrices. Used in his masterful work on continued fractions (1907).
- Perron's 1907 Mathematische Annalen paper (Towards the Theory of Matrices): challenges for a purely algebraic (limit-free) proof.
- Inspired the remarkable work of Frobenius on nonnegative matrices (1908, 1909, 1912): He succeeds to prove and extend Perron's Theorem; introduces notions of irreducibility, primitivity.

On the origins of the Perron-Frobenius [Hawkins, 2008]

- **Perron's** Habilitationsschrift (1905): Perron's Theorem for **positive** matrices. Used in his masterful work on continued fractions (1907).
- Perron's 1907 Mathematische Annalen paper (Towards the Theory of Matrices): challenges for a purely algebraic (limit-free) proof.
- Inspired the remarkable work of Frobenius on nonnegative matrices (1908, 1909, 1912): He succeeds to prove and extend Perron's Theorem; introduces notions of irreducibility, primitivity.

Theorem (Perron-Frobenius, irreducible matrix)

Let A be an *irreducible* square matrix with nonnegative entries. Then the largest in modulus eigenvalue of A is simple, positive and has a positive eigenvector.

• Markov (1908) adopts several key notions and results of Perron's theorem within the context of stochastic matrices.

- Markov (1908) adopts several key notions and results of Perron's theorem within the context of stochastic matrices.
- The linear algebraic foundations of Markov's theory for stochastic matrices are first established by **Von Mises** and **Romanovsky** by means of Frobenius' 1912 paper.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Markov (1908) adopts several key notions and results of Perron's theorem within the context of stochastic matrices.
- The linear algebraic foundations of Markov's theory for stochastic matrices are first established by **Von Mises** and **Romanovsky** by means of Frobenius' 1912 paper.
- Long pause.... about 40 years long (with the exception of some work by Ostrowski and Wielandt) until a new graduate student in Edinburgh in 1950....

Hans Schneider - age $1\pm\epsilon$

Hans Schneider - age 11

Michael Tsatsomeros

Perron-Frobenius Theory and Positivity in Linear Algebra

Hans' Recollections

• Hans hears A.C. Aitken's lectures on <u>linear operations in</u> probability (stochastic matrices).

イロン イヨン イヨン イヨン

Hans' Recollections

- Hans hears A.C. Aitken's lectures on <u>linear operations in</u> <u>probability</u> (stochastic matrices).
- Aitken relied on the work of Frechet who did not use matrices. The techniques of Frobenius and Markov seemed forgotten.

Hans' Recollections

- Hans hears A.C. Aitken's lectures on <u>linear operations in</u> probability (stochastic matrices).
- Aitken relied on the work of Frechet who did not use matrices. The techniques of Frobenius and Markov seemed forgotten.
- But Aitken reintroduced matrices and proved (perhaps following Romanovsky) that a stochastic matrix is regular iff 1 is simple and the lone eigenvalue on the unit circle.

Hans' Recollections

- Hans hears A.C. Aitken's lectures on <u>linear operations in</u> <u>probability</u> (stochastic matrices).
- Aitken relied on the work of Frechet who did not use matrices. The techniques of Frobenius and Markov seemed forgotten.
- But Aitken reintroduced matrices and proved (perhaps following Romanovsky) that a stochastic matrix is regular iff 1 is simple and the lone eigenvalue on the unit circle.
- Combinatorics (irreducibility) is entirely absent from Aitken's notes.

Shaping Hans' Mathematical Life

Fragment from Aitken's notes:

• Necessary for regularity: $\exists n_0$ such that given some column of P^{n_0} , no element is 0.

イロン イヨン イヨン イヨン

Shaping Hans' Mathematical Life

Fragment from Aitken's notes:

- Necessary for regularity: ∃n₀ such that given some column of Pⁿ⁰, no element is 0.
- This is the Hadamard condition for regularity. Extended to all columns, it is a necessary condition for positive regularity.
 Frechet (1938) showed that the 1st Hadamard condition is sufficient for regularity.

Shaping Hans' Mathematical Life

Fragment from Aitken's notes:

- Necessary for regularity: ∃n₀ such that given some column of Pⁿ⁰, no element is 0.
- This is the Hadamard condition for regularity. Extended to all columns, it is a necessary condition for positive regularity.
 Frechet (1938) showed that the 1st Hadamard condition is sufficient for regularity.
- Raising a matrix P to successive powers is laborious, and the discovery of n₀ may be long deferred. <u>Better criteria are to be</u> found in the structure of P itself, its latent roots, vectors and canonical form...

ヘロン 人間と 人間と 人間と

Hans' Current View of his Thesis

Hans embarks on the discovery eluded to by Aitken:

• Thesis partly in: The Elementary Divisors Associated with 0 of a Singular M-matrix, *Proc. Edinburgh Math. Soc.*, 10(1956), 108–122.

Hans' Current View of his Thesis

Hans embarks on the discovery eluded to by Aitken:

- Thesis partly in: The Elementary Divisors Associated with 0 of a Singular M-matrix, *Proc. Edinburgh Math. Soc.*, 10(1956), 108–122.
- Hans had never heard of graph theory.

Hans' Current View of his Thesis

Hans embarks on the discovery eluded to by Aitken:

- Thesis partly in: The Elementary Divisors Associated with 0 of a Singular M-matrix, *Proc. Edinburgh Math. Soc.*, 10(1956), 108–122.
- Hans had never heard of graph theory.
- He essentially introduces the notion of the <u>reduced graph</u> in terms of coefficients that can be 0 or 1.

イロン イヨン イヨン イヨン

Hans' Current View of his Thesis

Hans embarks on the discovery eluded to by Aitken:

- Thesis partly in: The Elementary Divisors Associated with 0 of a Singular M-matrix, *Proc. Edinburgh Math. Soc.*, 10(1956), 108–122.
- Hans had never heard of graph theory.
- He essentially introduces the notion of the <u>reduced graph</u> in terms of coefficients that can be 0 or 1.
- Applied it to concepts connected to the Jordan form he had heard Aitken discuss.

A (familiar) Theorem by Hans

THEOREM 2a

Let $A = [A_{ij}]$, i, j = 1, ..., k, be a singular M-matrix in standard form. Let S be the set of indices of singular A_{ii} . If $\alpha \in S$ and $R_{\alpha\beta} = 0$ whenever $\beta \in S$ and $\beta \neq \alpha$, then there exists a positive characteristic row vector

$$u'=(u'_1,\ldots,u'_k)$$

associated with 0, satisfying

 $u_i = 0$ when $R_{lpha i} = 0$ $u_i > 0$ when $R_{lpha i} = 1$,

for i = 1, ..., k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の久(?)

Generalizations of Perron-Frobenius

イロン イヨン イヨン イヨン

æ

Generalizations of Perron-Frobenius

• What other matrices satisfy the Perron-Frobenius theorem?

Michael Tsatsomeros Perron-Frobenius Theory and Positivity in Linear Algebra

イロト イヨト イヨト イヨト

3

Generalizations of Perron-Frobenius

- What other matrices satisfy the Perron-Frobenius theorem?
- Is there a wider mathematical context?

<ロ> (日) (日) (日) (日) (日)

Generalizations of Perron-Frobenius

- What other matrices satisfy the Perron-Frobenius theorem?
- Is there a wider mathematical context?
- Is there a converse theorem? More than "one"?

Generalizations of Perron-Frobenius

- What other matrices satisfy the Perron-Frobenius theorem?
- Is there a wider mathematical context?
- Is there a converse theorem? More than "one"?
- What are some challenging questions?

Cone Nonnegativity

Replace \mathbb{R}^n_+ by a an appropriate convex set.

イロン イヨン イヨン イヨン

Cone Nonnegativity

Replace \mathbb{R}^n_+ by a an appropriate convex set.

Definition A convex set $K \subset \mathbb{R}^n$ is called a **proper cone** if

- $aK \subseteq K$ for all $a \ge 0$ (cone)
- $K \cap (-K) = \{0\}$ (pointed)
- int $K \neq \emptyset$ (solid)
- K is closed

Cone Nonnegativity

Replace \mathbb{R}^n_+ by a an appropriate convex set.

Definition A convex set $K \subset \mathbb{R}^n$ is called a **proper cone** if

- $aK \subseteq K$ for all $a \ge 0$ (cone)
- $K \cap (-K) = \{0\}$ (pointed)
- int $K \neq \emptyset$ (solid)
- K is closed

Theorem (Perron-Frobenius)

Let K be a proper cone and suppose $AK \subset K$. Then $\rho(A)$ is an eigenvalue of A corresponding to an eigenvector $x \in K$.

・ロン ・回と ・ヨン・

Perron-Frobenius in Operator Algebras

Theorem (Perron-Frobenius)

Suppose ϕ is a positive linear map on a von Neumann algebra A. Let r denote the spectral radius of ϕ and A^+ the cone of positive elements of A. Then there exists nonzero $z \in A^+$ such that $\phi(z) = r z$.

イロン イヨン イヨン イヨン

Perron-Frobenius in Operator Algebras

Theorem (Perron-Frobenius)

Suppose ϕ is a positive linear map on a von Neumann algebra A. Let r denote the spectral radius of ϕ and A^+ the cone of positive elements of A. Then there exists nonzero $z \in A^+$ such that $\phi(z) = r z$.

• A von Neumann algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator.

• Here, positive elements of A are ones of the form a^*a .

イロン 不同と 不同と 不同と

Perron-Frobenius in Functional Analysis

Function $f : \operatorname{int} \mathbb{R}^n_+ \longrightarrow \operatorname{int} \mathbb{R}^n_+$ is:

- homogeneous if $\forall \lambda > 0$ and $\forall x \in int \mathbb{R}^n_+$, $f(\lambda x) = \lambda f(x)$;
- monotone if $\forall x \leq y \in \operatorname{int} \mathbb{R}^n_+$, $f(x) \leq f(y)$.

Given u > 0, $J \subseteq \{1, \ldots, n\}$, define

$$(u_J)_i = \begin{cases} u & \text{if } i \in J \\ 1 & \text{if } i \notin J \end{cases}$$

• Directed graph G(f) on vertices $\{1, \ldots, n\}$ with edge $i \to j$ if

$$\lim_{u\to\infty}f_i(u_{\{j\}})=\infty.$$

(ロ) (同) (E) (E) (E)

Theorem (Perron-Frobenius)

Let $f : \operatorname{int} \mathbb{R}^n_+ \longrightarrow \operatorname{int} \mathbb{R}^n_+$ be a homogeneous, monotone function. If G(f) is strongly connected, then f has an eigenvector in $\operatorname{int} \mathbb{R}^n_+$.

Example: In contrast to linear irreducible case, eigenvector need not be "unique":

$$f(x_1, x_2) = \left(\max\{x_1, \frac{x_2}{2}\}, \max\{\frac{x_1}{2}, x_2\}\right)$$

has eigenvalue 1 with corresponding eigenspace

$$\{x \in \operatorname{int} \mathbb{R}^2_+ \mid x_1/2 \le x_2 \le 2x_1\}.$$

・ロン ・回と ・ヨン ・ヨン

Perron-Frobenius in Max Algebra

Max Algebra: For nonnegative x, y and $A, B \in \mathbb{R}^{n \times n}$, $\begin{cases}
x + y \longrightarrow x \oplus y = \max(x, y) \\
x y \longrightarrow x y \\
A B \longrightarrow A \otimes B
\end{cases}$

(ロ) (同) (E) (E) (E)
Perron-Frobenius in Max Algebra

Max Algebra: For nonnegative x, y and $A, B \in \mathbb{R}^{n \times n}$, $\begin{cases}
x + y \longrightarrow x \oplus y = \max(x, y) \\
x y \longrightarrow x y \\
AB \longrightarrow A \otimes B
\end{cases}$

Theorem (Max Perron-Frobenius) [Cunningham-Green 1962/1979, Gondrian-Minoux, 1977]

If A is an $n \times n$ nonnegative, irreducible matrix, then there exists r > 0, and a positive vector x such that for each i = 1, ..., n,

$$\max_{j} a_{ij} x_j = r x_i, \quad (\text{i.e., } A \otimes x = r x)$$

・ロト ・回ト ・ヨト ・ヨト

Perron-Frobenius in Max Algebra

Max Algebra: For nonnegative x, y and $A, B \in \mathbb{R}^{n \times n}$, $\begin{cases}
x + y \longrightarrow x \oplus y = \max(x, y) \\
x y \longrightarrow x y \\
AB \longrightarrow A \otimes B
\end{cases}$

Theorem (Max Perron-Frobenius) [Cunningham-Green 1962/1979, Gondrian-Minoux, 1977]

If A is an $n \times n$ nonnegative, irreducible matrix, then there exists r > 0, and a positive vector x such that for each i = 1, ..., n,

$$\max_{j} a_{ij} x_j = r x_i, \quad (\text{i.e.}, A \otimes x = r x)$$

(r = maximum geom. mean (k-th root) of a circuit product.)

소리가 소문가 소문가 소문가

Perron-Frobenius in Max Algebra

Max Algebra: For nonnegative x, y and $A, B \in \mathbb{R}^{n \times n}$, $\begin{cases}
x + y \longrightarrow x \oplus y = \max(x, y) \\
x y \longrightarrow x y \\
AB \longrightarrow A \otimes B
\end{cases}$

Theorem (Max Perron-Frobenius) [Cunningham-Green 1962/1979, Gondrian-Minoux, 1977]

If A is an $n \times n$ nonnegative, irreducible matrix, then there exists r > 0, and a positive vector x such that for each i = 1, ..., n,

$$\max_{j} a_{ij} x_j = r x_i, \quad (\text{i.e.}, A \otimes x = r x)$$

(r = maximum geom. mean (k-th root) of a circuit product.) **Peter Butkovic**: Max Alg. Primer (website) & upcoming book!

Perron-Frobenius Theory and Positivity in Linear Algebra

Example: Again, in contrast to linear irreducible case, eigenvector need not be "unique", e.g.,

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \otimes \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

イロン イヨン イヨン イヨン

Perron-Frobenius in Matrix Polynomials

Theorem (Perron-Frobenius) [Psarrakos, T, LAA 2004] Let

$$L(\lambda) = I\lambda^m - A_{m-1}\lambda^{m-1} - \cdots - A_1\lambda - A_0,$$

where $A_j \ge 0$. Then the following hold:

- (a) $\rho(L)$ is an eigenvalue of $L(\lambda)$;
- (b) L(λ) has an entrywise nonnegative eigenvector corresponding to ρ(L);
- (c) $\rho(L)$ is a nondecreasing function of the entries of A_j .

Classical Converse to Perron-Frobenius

イロン イヨン イヨン イヨン

æ

Classical Converse to Perron-Frobenius

Theorem (Krein-Ruttman)

Suppose $\rho(A)$ is an eigenvalue of A, and deg $\rho(A) \ge \deg \lambda$ for every eigenvalue λ with $|\lambda| = \rho(A)$. Then there exists a proper cone K such that $AK \subset K$.

イロト イポト イヨト イヨト

Classical Converse to Perron-Frobenius

Theorem (Krein-Ruttman)

Suppose $\rho(A)$ is an eigenvalue of A, and deg $\rho(A) \ge \deg \lambda$ for every eigenvalue λ with $|\lambda| = \rho(A)$. Then there exists a proper cone K such that $AK \subset K$.

- Degree of $\lambda = size$ of largest Jordan block.
- Finite dimensional case of a theorem on Banach spaces.
- Constructive proof due to Birkhoff.

In search of an alternative converse

Quoting Perron (1906)

イロト イヨト イヨト イヨト

In search of an alternative converse

Quoting Perron (1906)

Perron's Corollary "The properties of positive matrices hold for all nonnegative matrices A such that A^k has positive entries for some power k."

Insightful: Anticipated notions of irreducibility, primitivity etc.

・ロト ・ 同ト ・ ヨト ・ ヨト

In search of an alternative converse

Paraphrasing Perron (1906)

イロト イヨト イヨト イヨト

In search of an alternative converse

Paraphrasing Perron (1906)

Perron's Corollary? The properties of positive matrices hold for all nonnegative matrices A such that A^k has positive (nonnegative) entries for some power all sufficiently large powers k.

・ロト ・ 同ト ・ ヨト ・ ヨト

In search of an alternative converse

Paraphrasing Perron (1906)

Perron's Corollary? The properties of positive matrices hold for all nonnegative matrices A such that A^k has positive (nonnegative) entries for some power all sufficiently large powers k.

Insightful: Suggests notion of Eventual Nonnegativity

(S. Friedland, B. Zaslavsky, D. Handelman, B.-S. Tam, C.R. Johnson, P. Tarazaga, J. McDonald, D. Noutsos, A. Elhashash, D. Szyld et al.)

・ロン ・回と ・ヨン・

Some definitions

An $n \times n$ matrix $A = [a_{ij}]$ is called:

• nonnegative $(A \ge 0)$ if $a_{ij} \ge 0 \forall i$ and j

Some definitions

An $n \times n$ matrix $A = [a_{ij}]$ is called:

- nonnegative $(A \ge 0)$ if $a_{ij} \ge 0 \forall i$ and j
- eventually nonnegative if $\exists k_0$ such that $\forall k \ge k_0$, $A^k \ge 0$

Some definitions

An $n \times n$ matrix $A = [a_{ij}]$ is called:

- nonnegative $(A \ge 0)$ if $a_{ij} \ge 0 \ \forall \ i \ \text{and} \ j$
- eventually nonnegative if $\exists k_0$ such that $\forall k \ge k_0$, $A^k \ge 0$
- eventually exponentially nonnegative if $\exists t_0 \in [0,\infty)$ such that $\forall t \ge t_0, e^{tA} \ge 0$

Some definitions

An $n \times n$ matrix $A = [a_{ij}]$ is called:

- nonnegative $(A \ge 0)$ if $a_{ij} \ge 0 \ \forall \ i \ \text{and} \ j$
- eventually nonnegative if $\exists k_0$ such that $\forall k \ge k_0$, $A^k \ge 0$
- eventually exponentially nonnegative if $\exists t_0 \in [0,\infty)$ such that $\forall t \ge t_0, e^{tA} \ge 0$

Recall that
$$e^{tA} = \sum_{k=0}^{\infty} \frac{t^k A^k}{k!}$$

Perron-Frobenius property

We say that $A \in \mathbb{R}^{n \times n}$ has

- the Perron-Frobenius property if ρ(A) > 0, ρ(A) ∈ σ(A) and ∃ a nonnegative eigenvector corresponding to ρ(A);
- the strong Perron-Frobenius property if, in addition to having the Perron-Frobenius property, $\rho(A)$ is simple,

 $ho(A)>|\lambda|$ for all $\lambda\in\sigma(A),\ \lambda
eq
ho(A)$

and a corresponding eigenvector is strictly positive.

ヘロン 人間と 人間と 人間と

Perron-Frobenius property

We say that $A \in \mathbb{R}^{n \times n}$ has

- the Perron-Frobenius property if ρ(A) > 0, ρ(A) ∈ σ(A) and ∃ a nonnegative eigenvector corresponding to ρ(A);
- the strong Perron-Frobenius property if, in addition to having the Perron-Frobenius property, $\rho(A)$ is simple,

 $ho(A) > |\lambda|$ for all $\lambda \in \sigma(A), \ \lambda \neq
ho(A)$

and a corresponding eigenvector is strictly positive.

Note: Every $A \ge 0$ has the Perron-Frobenius property and every irreducible $A \ge 0$ has the strong Perron-Frobenius property.

Eventually positive matrices

Theorem For a matrix $A \in \mathbb{R}^{n \times n}$ the following are equivalent:

- (i) Both matrices A and A^T have the strong Perron-Frobenius property.
- (ii) A is eventually positive.

Eventually positive matrices

Theorem For a matrix $A \in \mathbb{R}^{n \times n}$ the following are equivalent:

- (i) Both matrices A and A^T have the strong Perron-Frobenius property.
- (ii) A is eventually positive.

Proof:

(i) \implies (ii) Power method.

(ii) \implies (i) A inherits from positive power(s).

Eventually positive matrices

Theorem For a matrix $A \in \mathbb{R}^{n \times n}$ the following are equivalent:

- (i) Both matrices A and A^T have the strong Perron-Frobenius property.
- (ii) A is eventually positive.

Proof:

(i) \implies (ii) Power method.

(ii) \implies (i) A inherits from positive power(s).

First known explicit reference: [Handelman, J. Operator Theory, 1981]. Also [Johnson and Tarazaga, Positivity, 2004], and [Noutsos, LAA, 2006].

Eventually exponentially positive matrices

Theorem [Noutsos, T, SIMAX 2008] For a matrix $A \in \mathbb{R}^{n \times n}$ the following properties are equivalent:

- (i) $\exists a \ge 0$ such that A + aI and $A^T + aI$ have the strong Perron-Frobenius property.
- (ii) A + aI is eventually positive for some $a \ge 0$.

(iii) $A^T + aI$ is eventually positive for some $a \ge 0$.

- (iv) A is eventually exponentially positive.
- (v) A^T is eventually exponentially positive.

・ロン ・回 とくほ とくほ と

Application

- Control system $\dot{x}(t) = Ax(t) + Bu(t)$, A, B fixed, control u to be chosen.
- Feedback control u(t) = Fx(t).
- System becomes $\dot{x}(t) = (A + BF)x(t)$.
- Solution is $x(t) = e^{t(A+BF)}x_0$.
- If F is chosen so that A + BF is eventually positive, then x(t) becomes and remains nonnegative.

F-16 longitudinal motion - Landing

Some of the controls available to a pilot vary; others are trimmed. The aerodynamic variables describing its motion:

 Δu (Change in speed), α (Angle of attack), q (Pitch rate) δ_E (Elevator deflection), θ (Pitch).

・ロト ・ 同ト ・ ヨト ・ ヨト

Perron-Frobenius Theorem Hans Schneider - Age $1 \pm \epsilon$ Generalizations Toward a Converse Perron-Frobenius property Challenges

State-space equation: $\dot{x} = Ax + B\delta_E$

$$\mathbf{x} = \left[\begin{array}{c} \Delta u \\ \alpha \\ q \\ \theta \end{array} \right], \ \ A = \left[\begin{array}{c} -.0507 & -3.861 & 0 & -32.2 \\ -.00117 & -.5164 & 1 & 0 \\ -.000129 & 1.4168 & -.4932 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right], \ \ B = \left[\begin{array}{c} 0 \\ .0717 \\ -.165 \\ 0 \end{array} \right].$$

Stable (trimmed) flight is subject to $x(t) \in K$, where $K = S\mathbb{R}^4_+$ is some simplicial cone.

Goal: Choose δ_E so that $\exists t_0 \ge 0$ and $\forall t \ge t_0$, $x(t) \in K$.

Do change of variables $y(t) = S^{-1}x$ and pursue **feedback** law $\delta_E = Fy(t)$ so that $\tilde{A} + \tilde{B}F$ has Perron-Frobenius property.

Eventually positive nonnegative matrices

Theorem Let $A \in \mathbb{R}^{n \times n}$ be an eventually nonnegative matrix that is not nilpotent. Then both A and A^T have the Perron-Frobenius property.

Eventually positive nonnegative matrices

Theorem Let $A \in \mathbb{R}^{n \times n}$ be an eventually nonnegative matrix that is not nilpotent. Then both A and A^T have the Perron-Frobenius property.

• Is the converse true?

イロト イポト イヨト イヨト

Eventually positive nonnegative matrices

Theorem Let $A \in \mathbb{R}^{n \times n}$ be an eventually nonnegative matrix that is not nilpotent. Then both A and A^T have the Perron-Frobenius property.

- Is the converse true?
- Role of the (strong) Perron-Frobenius property ?

イロト イポト イヨト イヨト

Eventually positive nonnegative matrices

Theorem Let $A \in \mathbb{R}^{n \times n}$ be an eventually nonnegative matrix that is not nilpotent. Then both A and A^T have the Perron-Frobenius property.

- Is the converse true?
- Role of the (strong) Perron-Frobenius property ?
- "irreducibility" ?

・ロト ・ 同ト ・ ヨト ・ ヨト

Eventually positive nonnegative matrices

Theorem Let $A \in \mathbb{R}^{n \times n}$ be an eventually nonnegative matrix that is not nilpotent. Then both A and A^T have the Perron-Frobenius property.

- Is the converse true?
- Role of the (strong) Perron-Frobenius property ?
- "irreducibility" ?

・ロト ・ 同ト ・ ヨト ・ ヨト

Perron-Frobenius Theorem Hans Schneider - Age 1 ± c Generalizations Toward a Converse Perron-Frobenius property Challenges Counterexample 1

The Perron-Frobenius property for *A* **does not** imply eventual nonnegativity of *A*. E.g., consider

$$A = \left[\begin{array}{rrrr} 1 & 1 & 2 \\ 6 & 2 & -4 \\ 3 & 1 & 0 \end{array} \right]$$

- A has Perron-Frobenius property ($\rho(A) = 4$, $x = [1 \ 1 \ 1]^T$).
- A^T has Perron-Frobenius property ($\rho(A^T) = 4$, $x = [2 \ 1 \ 0]^T$).
- Third column of A^k has a negative entry ∀k ≥ 2, i.e., A is not eventually nonnegative.

・ロン ・回と ・ヨン・

Perron-Frobenius Theorem Hans Schneider - Age $1 \pm \epsilon$ Generalizations Toward a Converse Perron-Frobenius property Challenges

Counterexample 2

A non-nilpotent eventually nonnegative matrix **need not** have the strong Perron-Frobenius property; e.g.,

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}, A^{k} = 2^{k} \begin{bmatrix} 1 & 1 & k & k \\ 1 & 1 & k & k \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} (k \ge 2).$$

A has $\rho(A) = 2$ as an eigenvalue of multiplicity 2. (Crucial that $index_0(A) = 2$: size of largest Jordan block of 0.)

Some of many challenges

• Perron-Frobenius property + ? \implies Eventual nonnegativity

イロン イヨン イヨン イヨン

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? \iff Eventual nonnegativity

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? ⇐⇒ Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
- When is PAQ eventually nonnegative (positive)?

イロン イヨン イヨン イヨン

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
- When is *PAQ* eventually nonnegative (positive)?
- (When) is $\rho(A)$ a non-decreasing function of the entries?

・ロン ・回と ・ヨン ・ヨン

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? ⇐⇒ Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
- When is *PAQ* eventually nonnegative (positive)?
- (When) is $\rho(A)$ a non-decreasing function of the entries?

Let A be ev. nonnegative (positive) and D nonn. diag. matrix

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? ⇐⇒ Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
- When is PAQ eventually nonnegative (positive)?
- (When) is $\rho(A)$ a non-decreasing function of the entries?
- Let A be ev. nonnegative (positive) and D nonn. diag. matrix
 - When is A + D eventually nonnegative (positive)?

소리가 소문가 소문가 소문가

Some of many challenges

- Perron-Frobenius property + ? \implies Eventual nonnegativity
- Perron-Frobenius property + ? ⇐⇒ Eventual nonnegativity
- Perron-Frobenius property + ? ⇔ Ev. Exp. nonnegativity
- When is PAQ eventually nonnegative (positive)?
- (When) is $\rho(A)$ a non-decreasing function of the entries?
- Let A be ev. nonnegative (positive) and D nonn. diag. matrix
 - When is A + D eventually nonnegative (positive)?
 - When is DA eventually nonnegative (positive)?

・ロン ・回と ・ヨン ・ヨン

- For qualitative study of eventual nonnegativity, look at papers in ELA Vol. 19 (AIM Volume)
- \bullet For M-matrix types look at [Elhashash, Szyld, LAA & ELA 2008] and [Olesky, van den Driessche, T, ELA 2009]
- This presentation (will soon be) available at www.math.wsu.edu/faculty/tsat/

イロト イポト イヨト イヨト

Perron-Frobenius Theorem Hans Schneider - Age $1 \pm \epsilon$ Generalizations Toward a Converse Perron-Frobenius property Challenges

R.B. Bapat, A max version of the Perron-Frobenius theorem. Linear Algebra Appl., 275/276 (1998), 275-276.

A. Elhashash and D.B. Szyld. On general matrices having the Perron-Frobenius property. Electron. J. Linear Algebra, 17 (2008), 389-413.

D.R. Farenick. Irreducible linear maps on operator algebras. Proc. Amer. Math. Soc., 124 (1996), 3381-3390.

S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homogeneous, monotone functions, Trans, Amer. Math. Soc., 356 (2004), 4931-4950.

D. Handelman. Positive matrices and dimension groups affiliated to C*-algebras and topological Markov chains. J. Operator Theory, 6 (2001), 55-74.

T. Hawkins. Continued fractions and the origins of the Perron-Frobenius theorem, Arch. Hist, Exact Sci., 62(2008), 655-717.

C.R. Johnson and P. Tarazaga. On matrices with Perron-Frobenius properties and some negative entries. Positivity, 8 (2004), 327-338.

D. Noutsos. On Perron-Frobenius property of matrices having some negative entries. Linear Algebra Appl., 412 (2006), 132-153.

D. Noutsos and M.J. Tsatsomeros. Reachability and holdability of nonnegative states SIAM J. Matrix Anal. Appl., 30 (2008), 700-712.

D.D. Olesky, M.J. Tsatsomeros, and P. van den Driessche. My - matrices : A generalization of M-matrices based on eventually nonnegative matrices. Electron, J. Linear Algebra, 18 (2009), 339-351.

P.J. Psarrakos and M.J. Tsatsomeros. A Primer of Perron-Frobenius Theory for Matrix Polynomials. Linear Algebra Appl., 393 (2004), 333-352.

Hans Schneider's talk at AIM Workshop, 2008.

Handbook of Linear Algebra, CRC, 2006 (Chapter 9, 26)

2