ALA-2010, Novi Sad, Serbia 24-28 May 2010

ON GENERALIZED EVEN AND ODD OSCILLATORY **OPERATORS**

P. Sharma¹, O. Y. Kushel²

¹ Department of Mathematics University of Rajasthan, Jaipur, INDIA sharmapatanjali@rediffmail.com ² Department of Mechanics and Mathematics Belorussian State University, BELARUS kushel@mail.ru

May 26, 2010

 QQ

(ON GENERALIZED EVEN AND ODD OSC May 26, 2010 1/20

Definition 1

Let A be a linear operator acting in the space \mathbb{R}^n . In this case we can define operators $\otimes^j A$ and $\wedge^j A$ $(j=1,\;\ldots,\;n),$ i.e. the j -th tensor and the j-th exterior power of the operator A. They acts, respectively, in the space $\otimes^j\mathbb{R}^n=\mathbb{R}^{n^j}$ and $\wedge^j\mathbb{R}^n=\mathbb{R}^{C_n^j}.$

Definition 1

Let A be a linear operator acting in the space \mathbb{R}^n . In this case we can define operators $\otimes^j A$ and $\wedge^j A$ $(j=1,\;\ldots,\;n),$ i.e. the j -th tensor and the i -th exterior power of the operator A. They acts, respectively, in the space $\otimes^j\mathbb{R}^n=\mathbb{R}^{n^j}$ and $\wedge^j\mathbb{R}^n=\mathbb{R}^{C_n^j}.$

If e_1, \ldots, e_n is a basis in \mathbb{R}^n , then all the possible exterior products of the form $e_{i_1}\wedge\ldots\wedge e_{i_j}$, where $1\leq i_1<\ldots< i_j\leq n,$ form a basis in the j th exterior power $\wedge^j\mathbb{R}^n$ of the space \mathbb{R}^n .

Let $\{\lambda_i\}_{i=1}^n$ be all eigenvalues of the operator A , repeated according to multiplicity. Then all the possible products of the type $\{\lambda_{i_1}\dots\lambda_{i_j}\}$, where $1 \leq i_1 < \ldots < i_j \leq n$, form all the possible eigenvalues of the exterior power $\wedge^j A$, repeated according to multiplicity [3].

Let a linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ be defined by a $n\times n$ matrix $\mathbf A$ in the basis $e_1,~\ldots,~e_n.$ Then the matrix of its j th exterior power $\wedge^j A$ in the basis, which consists of all the possible exterior products of the form $e_{i_1}\wedge\ldots\wedge e_{i_j}\ \ (1\leq i_1<\ldots< i_j\leq n),$ coincides with the j th compound matrix $A^{(j)}$ of the initial matrix A. (Here the *j*th compound matrix $\mathbf{A}^{(j)}$ is a $\mathit C_{n}^{j}\times \mathit C_{n}^{j}$ matrix, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.)

- Let a linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ be defined by a $n\times n$ matrix $\mathbf A$ in the basis $e_1,~\ldots,~e_n.$ Then the matrix of its j th exterior power $\wedge^j A$ in the basis, which consists of all the possible exterior products of the form $e_{i_1}\wedge\ldots\wedge e_{i_j}\ \ (1\leq i_1<\ldots< i_j\leq n),$ coincides with the j th compound matrix $A^{(j)}$ of the initial matrix A. (Here the *j*th compound matrix $\mathbf{A}^{(j)}$ is a $\mathit C_{n}^{j}\times \mathit C_{n}^{j}$ matrix, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.)
- \bullet In the case, when the operator A is defined by its matrix, the statement about the eigenvalues of its j th exterior power $\wedge^j A$ turns into the Kronecker theorem (see [1], p. 80, theorem 23) about the eigenvalues of the jth compound matrix. The proof of the Kronecker theorem without using exterior products is given in monograph [1].

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

 \leftarrow

 299

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \ge 0$ we have $x + y$, $\alpha x \in K$

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \geq 0$ we have $x + y$, $\alpha x \in K$

- it is pointed
	- i.e. $K \cap (-K) = \{0\}$

 200

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

o it is a convex cone

i.e. for any $x, y \in K$, $\alpha \geq 0$ we have $x + y$, $\alpha x \in K$

- it is pointed
	- i.e. $K \cap (-K) = \{0\}$
- **o** it is closed and solid i.e. $\text{int}(K) \neq \emptyset$

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

o it is a convex cone

i.e. for any $x, y \in K$, $\alpha > 0$ we have $x + y$, $\alpha x \in K$

- it is pointed
	- i.e. $K \cap (-K) = \{0\}$
- it is closed and solid i.e. $\text{int}(K) \neq \emptyset$

K –primitive

A linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ is called K -primitive, if there exists a proper cone K, such that $AK \subseteq K$ and the only nonempty subset of $\partial(K)$ which is left invariant by A is $\{0\}$.

Generalized Oscillatory

A linear operator A is called *generalized oscillatory* if it is K -primitive with respect to a proper cone $\mathcal{K}_1\subset\mathbb{R}^n$, and for every j $(1< j\leq n)$ its j -th exterior power $\wedge^j A$ is κ -primitive with respect to a proper cone $\kappa_j\subset \mathbb{R}^{C_n^j}.$

Generalized Oscillatory

A linear operator A is called *generalized oscillatory* if it is K -primitive with respect to a proper cone $\mathcal{K}_1\subset\mathbb{R}^n$, and for every j $(1< j\leq n)$ its j -th exterior power $\wedge^j A$ is κ -primitive with respect to a proper cone $\kappa_j\subset \mathbb{R}^{C_n^j}.$

Generalized Even (Odd) Oscillatory

A linear operator A is called generalized even (odd) oscillatory if for every even (respectively odd) j $(1 \leq j \leq n)$ its j -th exterior power $\wedge^j A$ is \mathcal{K}_{I} primitive with respect to a proper cone $\mathcal{K}_j \subset \mathbb{R}^{C_n^j}.$

A matrix A is called non-negative (positive), if

 \leftarrow

 299

A matrix A is called non-negative (positive), if

• all its elements a_{ij} are nonnegative (positive).

 QQ

Primitive Matrix

A matrix A is called non-negative (positive), if

• all its elements a_{ij} are nonnegative (positive).

A nonnegative matrix A is called *primitive*, if

Primitive Matrix

A matrix \bf{A} is called *non-negative* (*positive*), if

- all its elements a_{ij} are nonnegative (positive).
- A nonnegative matrix \bf{A} is called *primitive*, if
	- **•** there exists such a natural number m, that the matrix A^m is positive.

A matrix \bf{A} is called *non-negative* (*positive*), if

• all its elements a_{ii} are nonnegative (positive).

A nonnegative matrix \bf{A} is called *primitive*, if

• there exists such a natural number m, that the matrix A^m is positive.

K –primitive

If the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is primitive, then A is K-primitive with respect to the cone K_{+} of all nonnegative vectors from the space \mathbb{R}^n . The statement, that if the matrix $\boldsymbol{\mathsf{A}}$ is similar to a primitive matrix, then the corresponding operator \overline{A} is K-primitive with respect to some polyhedral cone K in \mathbb{R}^n , easily follows from the above reasoning. In some special cases we can see, if the matrix \bf{A} is similar to a primitive matrix, just looking at its structure.

Let a linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ be generalized oscillatory. Then all the eigenvalues of the operator A are simple, positive and different in modulus from each other:

$$
\rho(A)=\lambda_1>\lambda_2>\ldots>\lambda_n>0.
$$

Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be even generalized oscillatory. Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

 $\rho(A) = |\lambda_1| \leq |\lambda_2| \leq |\lambda_3| \leq |\lambda_4| \leq \ldots$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, for every pair $\lambda_i \lambda_{i+1}$ ($i = 1, 3, 5, \ldots$) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$. If n is odd, then λ_n is real.

Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be odd generalized oscillatory. Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

 $\rho(A) = |\lambda_1| < |\lambda_2| \leq |\lambda_3| < |\lambda_4| \leq \ldots$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, $\lambda_1 = \rho(A)$ is a simple positive eigenvalue of A. If n is even, then λ_n is real. For every pair $\lambda_i \lambda_{i+1}$ (i = 2, 4, 6, ...) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$.

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j\times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j\times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.

For Example:

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j\times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.

For Example: If

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j\times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix A . The minors are numerated in the lexicographic order.

For Example: If

$$
\mathbf{A} = \left(\begin{array}{rrrr} -3 & -1 & 1 & 2 \\ 1 & -1 & 3 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 0 & 0 & -2 \end{array} \right).
$$

Then

P. Sharma¹, O. Y. Kushel² (ON GENERALIZED EVEN AND ODD OSC May 26, 2010 12 / 20

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 299

Then

$$
\mathbf{A}^{(2)} = \left(\begin{array}{cccccc} 4 & -10 & -5 & -2 & 1 & -5 \\ -1 & -5 & -7 & -2 & -3 & -1 \\ 3 & -3 & -3 & 0 & 1 & -1 \\ 3 & -5 & -1 & -4 & -2 & 2 \\ 3 & 9 & -4 & 0 & 1 & -3 \\ -3 & -3 & -5 & 0 & -1 & -1 \end{array}\right)
$$

 299

.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

J –sign-symmetric

A matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is called \mathcal{J} –sign-symmetric, if there exists such a subset $\mathcal{J} \subseteq \{1, \ldots, n\}$, that both the conditions (a) and (b) are true:

- (a) the inequality $a_{ii} \leq 0$ follows from the inclusions $i \in \mathcal{J}$, $j \in \{1, \ldots, n\} \setminus \mathcal{J}$ and from the inclusions $j \in \mathcal{J}$, $i \in \{1, \ldots, n\} \setminus \mathcal{J}$ for any two numbers $i, j;$
- (b) one of the inclusions $i \in \mathcal{J}$, $j \in \{1, ..., n\} \setminus \mathcal{J}$ or $j \in \mathcal{J}$, $i \in \{1, \ldots, n\} \setminus \mathcal{J}$ follows from the strict inequality $a_{ii} < 0$.

strictly J -sign-symmetric

A matrix **A** is called *strictly J-sign-symmetric*, if **A** does not contain zero elements and there exists such a subset $\mathcal{J} \subseteq \{1, \ldots, n\}$, that the inequality $a_{ii} < 0$ is true if and only if one of the numbers i, j belongs to the set \mathcal{J} , and the other belongs to the set $\{1, \ldots, n\} \setminus \mathcal{J}$.

Example 1: If

 \int_0^1 Departmen ON GENERALIZED EVEN AND ODD OSC May 26, 2010 15 / 20

∍

 299

.

4. 0. 3.

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow ∍

Example 1: If

$$
\mathbf{A} = \left(\begin{array}{rrrr} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).
$$

.

4. 0. 3.

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

Ξ

 \int_0^1 Department ON GENERALIZED EVEN AND ODD OSC May 26, 2010 15 / 20

Ξ

 299

Example 1: If

$$
\mathbf{A} = \left(\begin{array}{rrrr} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).
$$

.

Kロト K同下

∍

 \sim

Then

∍

 299

Example 1: If

$$
\mathbf{A} = \left(\begin{array}{cccc} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).
$$

Then

$$
\mathbf{A}^{(2)} = \left(\begin{array}{cccccc} 149 & -33 & -56 & -60 & -156 & 12 \\ -33 & 21 & 12 & 32 & 34 & -10 \\ -56 & 12 & 44 & 22 & 90 & -2 \\ -60 & 32 & 22 & 52 & 62 & -14 \\ -156 & 34 & 90 & 62 & 210 & -10 \\ 12 & -10 & -2 & -14 & -10 & 6 \end{array}\right)
$$

.

◆ロト ◆伊ト

∍

 \sim

∍

Þ

 299

.

Example 1: If

$$
\mathbf{A} = \left(\begin{array}{cccc} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).
$$

Then

$$
\mathbf{A}^{(2)} = \left(\begin{array}{cccccc} 149 & -33 & -56 & -60 & -156 & 12 \\ -33 & 21 & 12 & 32 & 34 & -10 \\ -56 & 12 & 44 & 22 & 90 & -2 \\ -60 & 32 & 22 & 52 & 62 & -14 \\ -156 & 34 & 90 & 62 & 210 & -10 \\ 12 & -10 & -2 & -14 & -10 & 6 \end{array}\right)
$$

where the set $\mathcal J$ is equal to $\{1, 6\}$ or $\{2, 3, 4, 5\}$.

 QQ

.

4. 17. 18

4 何 ト 4

Example 2: If

 \int_0^1 Departmen ON GENERALIZED EVEN AND ODD OSC May 26, 2010 16 / 20

Ξ

 299

.

 \leftarrow \Box

→ 伊 **SIL** \sim Ξ

Example 2: If

$$
\mathbf{A} = \left(\begin{array}{rrrr} 2 & 5 & 4 & 3 \\ 3 & 36 & 25 & 12 \\ 3 & 25 & 18 & 9 \\ 3 & 12 & 9 & 6 \end{array} \right).
$$

.

4 0 8 - 4 点 **SIL**

 \int_0^1 Department ON GENERALIZED EVEN AND ODD OSC May 26, 2010 16 / 20

 299

Example 2: If

$$
\mathbf{A} = \left(\begin{array}{rrrr} 2 & 5 & 4 & 3 \\ 3 & 36 & 25 & 12 \\ 3 & 25 & 18 & 9 \\ 3 & 12 & 9 & 6 \end{array} \right).
$$

.

K ロ ▶ K 何 ▶ K

Ξ

Then

 299

(Department ON GENERALIZED EVEN AND ODD OSC May 26, 2010 16 / 20

 \equiv 990

.

メロメメ 御き メミメメ ミト

.

where the set $\mathcal J$ is equal to $\{1, 2, 3\}$ or $\{4, 5, 6\}$.

 QQ

.

Ð

J -sign-symmetric primitive Matrix

• If the matrix **A** is J –sign-symmetric (strictly J –sign-symmetric), then it is similar to some nonnegative (respectively positive) matrix. Moreover, the matrix of the similarity transformation is diagonal, and its diagonal elements are equal to ± 1 .

J -sign-symmetric primitive Matrix

- **•** If the matrix **A** is J -sign-symmetric (strictly J -sign-symmetric), then it is similar to some nonnegative (respectively positive) matrix. Moreover, the matrix of the similarity transformation is diagonal, and its diagonal elements are equal to ± 1 .
- It's easy to see, that if the matrix **A** is J -sign-symmetric, and the matrix A^m is strictly J -sign-symmetric for some natural number m, then the matrix \bf{A} is similar to some primitive matrix with the diagonal matrix of the similarity transformation. Let us call such matrices J -sign-symmetric primitive. In this case the linear operator $A: \mathbb{R}^n \to \mathbb{R}^n$, defined by the matrix A , is K-primitive with respect to some cone spanned on the vectors $e'_1, \ \ldots, \ e'_n$, where each vector e'_i is equal either to e_i or to $-e_i$ $(i = 1, ..., n)$.

Theorem $1[′]$

Let the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be \mathcal{J} -sign-symmetric primitive, and let the jth compound matrix $A^{(j)}$ be also J -sign-symmetric primitive for every j $(1 < j < n)$. Then all the eigenvalues of the operator A are simple, positive and different in modulus from each other:

$$
\rho(A)=\lambda_1>\lambda_2>\ldots>\lambda_n>0.
$$

(ON GENERALIZED EVEN AND ODD OSC May 26, 2010 18 / 20

Theorem $2[′]$

Let the jth compound matrix $A^{(j)}$ of the matrix A of a linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ be $\mathcal J$ –sign-symmetric primitive for every even j $(1\leq j\leq n).$ Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

$$
\rho(A)=|\lambda_1|\leq |\lambda_2|<|\lambda_3|\leq |\lambda_4|<\ldots.
$$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, for every pair $\lambda_i \lambda_{i+1}$ ($i = 1, 3, 5, \ldots$) the following equality is true: $arg(\lambda_{i+1}) = -arg(\lambda_i)$. If n is odd, then λ_n is real.

Theorem $3[′]$

Let the ith compound matrix $A^{(j)}$ of the matrix A of a linear operator $A:\mathbb{R}^n\to\mathbb{R}^n$ be $\mathcal J$ –sign-symmetric primitive for every odd j $(1\leq j\leq n).$ Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

$$
\rho(A)=|\lambda_1|<|\lambda_2|\leq |\lambda_3|<|\lambda_4|\leq \ldots.
$$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, $\lambda_1 = \rho(A)$ is a simple positive eigenvalue of A. If n is even, then λ_n is real. For every pair $\lambda_i \lambda_{i+1}$ (i = 2, 4, 6, ...) the following equality is true: $arg(\lambda_{i+1}) = -arg(\lambda_i)$.

• Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).

- **Berman A. and Plemmons R.J.**, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- **Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels** and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).

- **Berman A. and Plemmons R.J.**, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).
- • Kalafati P.D., Oscillatory properties of fundamental functions in third-order boundary-value problems, Dokl. Akad. Nauk SSSR, 143 (1962), 518-521.

- **Berman A. and Plemmons R.J.**, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).
- Kalafati P.D., Oscillatory properties of fundamental functions in third-order boundary-value problems, Dokl. Akad. Nauk SSSR, 143 (1962), 518-521.
- Tam B.S., A cone-theoretic approach to the spectral theory of positive linear operators: the finite-dimensional case, Taiwanese J. Math., 5 (2001), 207–277.