ALA-2010, Novi Sad, Serbia 24-28 May 2010

ON GENERALIZED EVEN AND ODD OSCILLATORY OPERATORS

P. Sharma¹, O. Y. Kushel²

 Department of Mathematics University of Rajasthan, Jaipur, INDIA sharmapatanjali@rediffmail.com
 Department of Mechanics and Mathematics Belorussian State University, BELARUS kushel@mail.ru

May 26, 2010

May 26, 2010

1 / 20

P. Sharma¹, O. Y. Kushel² (¹ Department (ON GENERALIZED EVEN AND ODD OSC

Definition 1

Let A be a linear operator acting in the space \mathbb{R}^n . In this case we can define operators $\otimes^j A$ and $\wedge^j A$ $(j = 1, \ldots, n)$, i.e. the *j*-th tensor and the *j*-th exterior power of the operator A. They acts, respectively, in the space $\otimes^j \mathbb{R}^n = \mathbb{R}^{n^j}$ and $\wedge^j \mathbb{R}^n = \mathbb{R}^{C_n^j}$.

Definition 1

Let A be a linear operator acting in the space \mathbb{R}^n . In this case we can define operators $\otimes^j A$ and $\wedge^j A$ (j = 1, ..., n), i.e. the *j*-th tensor and the *j*-th exterior power of the operator A. They acts, respectively, in the space $\otimes^j \mathbb{R}^n = \mathbb{R}^{n^j}$ and $\wedge^j \mathbb{R}^n = \mathbb{R}^{C_n^j}$.

If e_1, \ldots, e_n is a basis in \mathbb{R}^n , then all the possible exterior products of the form $e_{i_1} \wedge \ldots \wedge e_{i_j}$, where $1 \leq i_1 < \ldots < i_j \leq n$, form a basis in the *j*th exterior power $\wedge^j \mathbb{R}^n$ of the space \mathbb{R}^n .

Let $\{\lambda_i\}_{i=1}^n$ be all eigenvalues of the operator A, repeated according to multiplicity. Then all the possible products of the type $\{\lambda_{i_1} \dots \lambda_{i_j}\}$, where $1 \leq i_1 < \dots < i_j \leq n$, form all the possible eigenvalues of the exterior power $\wedge^j A$, repeated according to multiplicity [3].

Let a linear operator A: ℝⁿ → ℝⁿ be defined by a n × n matrix A in the basis e₁, ..., e_n. Then the matrix of its *j*th exterior power ∧^jA in the basis, which consists of all the possible exterior products of the form e_{i1} ∧ ... ∧ e_{ij} (1 ≤ i₁ < ... < i_j ≤ n), coincides with the *j*th compound matrix A^(j) of the initial matrix A. (Here the *j*th compound matrix A^(j) is a C^j_n × C^j_n matrix, which consists of all the minors of the *j*th order of the initial matrix A. The minors are numerated in the lexicographic order.)

- Let a linear operator A: ℝⁿ → ℝⁿ be defined by a n × n matrix A in the basis e₁, ..., e_n. Then the matrix of its jth exterior power ∧^jA in the basis, which consists of all the possible exterior products of the form e_{i1} ∧ ... ∧ e_{ij} (1 ≤ i₁ < ... < i_j ≤ n), coincides with the jth compound matrix A^(j) of the initial matrix A. (Here the jth compound matrix A^(j) is a C^j_n × C^j_n matrix, which consists of all the minors of the jth order of the initial matrix A. The minors are numerated in the lexicographic order.)
- In the case, when the operator A is defined by its matrix, the statement about the eigenvalues of its *j*th exterior power ∧^{*j*}A turns into the Kronecker theorem (see [1], p. 80, theorem 23) about the eigenvalues of the *j*th compound matrix. The proof of the Kronecker theorem without using exterior products is given in monograph [1].

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \ge 0$ we have x + y, $\alpha x \in K$

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \ge 0$ we have x + y, $\alpha x \in K$

- it is pointed
 - i.e. $K \cap (-K) = \{0\}$

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \ge 0$ we have x + y, $\alpha x \in K$

- it is pointed
 - i.e. $K \cap (-K) = \{0\}$
- it is closed and solid
 i.e. int(K) ≠ Ø

A set $K \subset \mathbb{R}^n$ is called *a proper cone*, if

• it is a convex cone

i.e. for any $x, y \in K$, $\alpha \ge 0$ we have x + y, $\alpha x \in K$

- it is pointed
 - i.e. $K \cap (-K) = \{0\}$
- it is closed and solid
 i.e. int(K) ≠ Ø

K-primitive

A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is called *K*-*primitive*, if there exists a proper cone *K*, such that $AK \subseteq K$ and the only nonempty subset of $\partial(K)$ which is left invariant by *A* is $\{0\}$.

Generalized Oscillatory

A linear operator A is called *generalized oscillatory* if it is K-primitive with respect to a proper cone $K_1 \subset \mathbb{R}^n$, and for every j $(1 < j \le n)$ its j-th exterior power $\wedge^j A$ is K-primitive with respect to a proper cone $K_j \subset \mathbb{R}^{C_n^j}$.

Generalized Oscillatory

A linear operator A is called *generalized oscillatory* if it is K-primitive with respect to a proper cone $K_1 \subset \mathbb{R}^n$, and for every j $(1 < j \le n)$ its j-th exterior power $\wedge^j A$ is K-primitive with respect to a proper cone $K_j \subset \mathbb{R}^{C_n^j}$.

Generalized Even (Odd) Oscillatory

A linear operator A is called *generalized even* (odd) oscillatory if for every even (respectively odd) j ($1 \le j \le n$) its j-th exterior power $\wedge^j A$ is K-primitive with respect to a proper cone $K_j \subset \mathbb{R}^{C_n^j}$.

A matrix A is called non-negative (positive), if

A matrix $\boldsymbol{\mathsf{A}}$ is called *non-negative* (*positive*), if

• all its elements a_{ij} are nonnegative (positive).

Primitive Matrix

A matrix **A** is called *non-negative* (*positive*), if

• all its elements a_{ij} are nonnegative (positive).

A nonnegative matrix **A** is called *primitive*, if

Primitive Matrix

A matrix **A** is called *non-negative* (*positive*), if

- all its elements a_{ij} are nonnegative (positive).
- A nonnegative matrix **A** is called *primitive*, if
 - there exists such a natural number m, that the matrix \mathbf{A}^m is positive.

A matrix **A** is called *non-negative* (*positive*), if

• all its elements *a_{ij}* are nonnegative (positive).

A nonnegative matrix **A** is called *primitive*, if

• there exists such a natural number m, that the matrix \mathbf{A}^m is positive.

K-primitive

If the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is primitive, then A is K-primitive with respect to the cone K_+ of all nonnegative vectors from the space \mathbb{R}^n . The statement, that if the matrix **A** is similar to a primitive matrix, then the corresponding operator A is K-primitive with respect to some polyhedral cone K in \mathbb{R}^n , easily follows from the above reasoning. In some special cases we can see, if the matrix **A** is similar to a primitive matrix, just looking at its structure.

Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be generalized oscillatory. Then all the eigenvalues of the operator A are simple, positive and different in modulus from each other:

$$\rho(A) = \lambda_1 > \lambda_2 > \ldots > \lambda_n > 0.$$

Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be even generalized oscillatory. Then the algebraic multiplicity $m(\lambda)$ of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

 $\rho(A) = |\lambda_1| \le |\lambda_2| < |\lambda_3| \le |\lambda_4| < \dots$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, for every pair $\lambda_i \lambda_{i+1}$ (i = 1, 3, 5, ...) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$. If n is odd, then λ_n is real.

Let a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be odd generalized oscillatory. Then the algebraic multiplicity $m(\lambda)$ of any eigenvalue λ of the operator A is not greater than 2. The following inequalities for the modules of the eigenvalues are true:

 $\rho(A) = |\lambda_1| < |\lambda_2| \le |\lambda_3| < |\lambda_4| \le \ldots$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, $\lambda_1 = \rho(A)$ is a simple positive eigenvalue of A. If n is even, then λ_n is real. For every pair $\lambda_i \lambda_{i+1}$ (i = 2, 4, 6, ...) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$.

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j \times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix **A**. The minors are numerated in the lexicographic order.

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j \times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix **A**. The minors are numerated in the lexicographic order.

For Example:

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j \times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix **A**. The minors are numerated in the lexicographic order.

For Example: If

Let **A** be an $n \times n$ matrix, then the *j*th compound matrix $\mathbf{A}^{(j)}$ of the matrix **A** is defined as the matrix of order $C_n^j \times C_n^j$, which consists of all the minors of the *j*th order of the initial matrix **A**. The minors are numerated in the lexicographic order.

For Example: If

$$\mathbf{A} = \begin{pmatrix} -3 & -1 & 1 & 2\\ 1 & -1 & 3 & 1\\ 2 & 1 & 1 & 1\\ 3 & 0 & 0 & -2 \end{pmatrix}$$

Then

P. Sharma¹, O. Y. Kushel² (¹ Department ON GENERALIZED EVEN AND ODD OSC

<ロ> <同> <同> < 同> < 同>

Then

$$\mathbf{A}^{(2)} = \begin{pmatrix} 4 & -10 & -5 & -2 & 1 & -5 \\ -1 & -5 & -7 & -2 & -3 & -1 \\ 3 & -3 & -3 & 0 & 1 & -1 \\ 3 & -5 & -1 & -4 & -2 & 2 \\ 3 & 9 & -4 & 0 & 1 & -3 \\ -3 & -3 & -5 & 0 & -1 & -1 \end{pmatrix}$$

ON GENERALIZED EVEN AND ODD OSC

< ≣ >

•

・ロト ・日下・ ・日下

\mathcal{J} -sign-symmetric

A matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is called \mathcal{J} -sign-symmetric, if there exists such a subset $\mathcal{J} \subseteq \{1, \ldots, n\}$, that both the conditions (a) and (b) are true:

- (a) the inequality $a_{ij} \leq 0$ follows from the inclusions $i \in \mathcal{J}$, $j \in \{1, \ldots, n\} \setminus \mathcal{J}$ and from the inclusions $j \in \mathcal{J}$, $i \in \{1, \ldots, n\} \setminus \mathcal{J}$ for any two numbers i, j;
- (b) one of the inclusions $i \in \mathcal{J}$, $j \in \{1, \ldots, n\} \setminus \mathcal{J}$ or $j \in \mathcal{J}$, $i \in \{1, \ldots, n\} \setminus \mathcal{J}$ follows from the strict inequality $a_{ij} < 0$.

strictly *J*-sign-symmetric

A matrix **A** is called *strictly* \mathcal{J} -*sign-symmetric*, if **A** does not contain zero elements and there exists such a subset $\mathcal{J} \subseteq \{1, \ldots, n\}$, that the inequality $a_{ij} < 0$ is true if and only if one of the numbers *i*, *j* belongs to the set \mathcal{J} , and the other belongs to the set $\{1, \ldots, n\} \setminus \mathcal{J}$.

Example 1: If

ON GENERALIZED EVEN AND ODD OSC

=

.

< 17 ▶

Example 1: If

$$\mathbf{A} = \begin{pmatrix} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{pmatrix}.$$

.

< 17 ▶

P. Sharma¹, O. Y. Kushel² (¹ Department ON GENERALIZED EVEN AND ODD OSC

Example 1: If

$$\mathbf{A} = \left(egin{array}{cccccc} 30 & 41 & 3 & 16 \ 41 & 61 & 3 & 20 \ 3 & 3 & 1 & 2 \ 16 & 20 & 2 & 10 \end{array}
ight).$$

.

< 同 ▶

Then

Example 1: If

$$\mathbf{A} = \left(\begin{array}{rrrr} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).$$

Then

$$\mathbf{A}^{(2)} = \begin{pmatrix} 149 & -33 & -56 & -60 & -156 & 12 \\ -33 & 21 & 12 & 32 & 34 & -10 \\ -56 & 12 & 44 & 22 & 90 & -2 \\ -60 & 32 & 22 & 52 & 62 & -14 \\ -156 & 34 & 90 & 62 & 210 & -10 \\ 12 & -10 & -2 & -14 & -10 & 6 \end{pmatrix}$$

.

< 同 ▶

•

Example 1: If

$$\mathbf{A} = \left(\begin{array}{rrrr} 30 & 41 & 3 & 16 \\ 41 & 61 & 3 & 20 \\ 3 & 3 & 1 & 2 \\ 16 & 20 & 2 & 10 \end{array} \right).$$

Then

$$\mathbf{A}^{(2)} = \begin{pmatrix} 149 & -33 & -56 & -60 & -156 & 12 \\ -33 & 21 & 12 & 32 & 34 & -10 \\ -56 & 12 & 44 & 22 & 90 & -2 \\ -60 & 32 & 22 & 52 & 62 & -14 \\ -156 & 34 & 90 & 62 & 210 & -10 \\ 12 & -10 & -2 & -14 & -10 & 6 \end{pmatrix}$$

where the set \mathcal{J} is equal to $\{1,6\}$ or $\{2,3,4,5\}$.

•

Example 2: If

P. Sharma¹, O. Y. Kushel² (¹ Department ON GENERALIZED EVEN AND ODD OSC

.

Example 2: If

$$\mathbf{A} = \left(\begin{array}{rrrr} 2 & 5 & 4 & 3 \\ 3 & 36 & 25 & 12 \\ 3 & 25 & 18 & 9 \\ 3 & 12 & 9 & 6 \end{array} \right).$$

.

Example 2: If

$$\mathbf{A} = \left(\begin{array}{rrrr} 2 & 5 & 4 & 3 \\ 3 & 36 & 25 & 12 \\ 3 & 25 & 18 & 9 \\ 3 & 12 & 9 & 6 \end{array} \right).$$

.

< 17 ▶

Then

P. Sharma¹, O. Y. Kushel² (¹ Department ON GENERALIZED EVEN AND ODD OSC

Example 2	: If							
Then		A =	$ \begin{pmatrix} 2\\ 3\\ 3\\ 3 \end{pmatrix} $	5 36 25 12	4 3 25 12 18 9 9 6).		
Then		/ 57	38	15	-19	-48	-27 \	`
		35	24	9	-10	-30	-18	
	A ⁽²⁾ =	9	6	3	-3	-6	-3	
		-33	-21	-9	23	24	9	
		-72	-48	-18	24	72	42	
		-39	-27	_9	9	42	27 /	

P. Sharma¹, O. Y. Kushel² (¹ Department ON GENERALIZED E<u>VEN AND ODD OSC</u>

.

・ロト ・部ト ・ヨト ・ヨト

.

Example 2:	lf							
			$\binom{2}{2}$	5	4 3 25 12 18 9 9 6			
		۸ _	3	36	25 12			
		A –	3	25	18 9	·		
			(3	12	9 6)		
Then								
		/ 57	38	15	-19	-48	-27 \	
	$\mathbf{A}^{(2)} = \Bigg($	35	24	9	-10	-30	-18	
		9	6	3	-3	-6	-3	
		-33	-21	_9	23	24	9	·
		-72	-48	-18	24	72	42	
		∖ −39	-27	_9	9	42	27 /	

where the set \mathcal{J} is equal to $\{1, 2, 3\}$ or $\{4, 5, 6\}$.

\mathcal{J} -sign-symmetric primitive Matrix

 If the matrix A is *J*-sign-symmetric (strictly *J*-sign-symmetric), then it is similar to some nonnegative (respectively positive) matrix. Moreover, the matrix of the similarity transformation is diagonal, and its diagonal elements are equal to ±1.

\mathcal{J} -sign-symmetric primitive Matrix

- If the matrix A is *J*-sign-symmetric (strictly *J*-sign-symmetric), then it is similar to some nonnegative (respectively positive) matrix. Moreover, the matrix of the similarity transformation is diagonal, and its diagonal elements are equal to ±1.
- It's easy to see, that if the matrix A is *J*-sign-symmetric, and the matrix A^m is strictly *J*-sign-symmetric for some natural number *m*, then the matrix A is similar to some primitive matrix with the diagonal matrix of the similarity transformation. Let us call such matrices *J*-sign-symmetric primitive. In this case the linear operator A : ℝⁿ → ℝⁿ, defined by the matrix A, is K-primitive with respect to some cone spanned on the vectors e'₁, ..., e'_n, where each vector e'_i is equal either to e_i or to -e_i (i = 1, ..., n).

Theorem $1^{'}$

Let the matrix **A** of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be \mathcal{J} -sign-symmetric primitive, and let the *j*th compound matrix $\mathbf{A}^{(j)}$ be also \mathcal{J} -sign-symmetric primitive for every j ($1 < j \leq n$). Then all the eigenvalues of the operator A are simple, positive and different in modulus from each other:

$$\rho(A) = \lambda_1 > \lambda_2 > \ldots > \lambda_n > 0.$$

P. Sharma¹, O. Y. Kushel² (¹ Department (ON GENERALIZED EVEN AND ODD OSC

Theorem 2'

Let the jth compound matrix $\mathbf{A}^{(j)}$ of the matrix \mathbf{A} of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be \mathcal{J} -sign-symmetric primitive for every even j $(1 \le j \le n)$. Then the algebraic multiplicity $m(\lambda)$ of any eigenvalue λ of the operator Ais not greater than 2. The following inequalities for the modules of the eigenvalues are true:

$$\rho(A) = |\lambda_1| \le |\lambda_2| < |\lambda_3| \le |\lambda_4| < \dots$$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, for every pair $\lambda_i \lambda_{i+1}$ (i = 1, 3, 5, ...) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$. If n is odd, then λ_n is real.

Theorem 3[′]

Let the jth compound matrix $\mathbf{A}^{(j)}$ of the matrix \mathbf{A} of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ be \mathcal{J} -sign-symmetric primitive for every odd j $(1 \le j \le n)$. Then the algebraic multiplicity $m(\lambda)$ of any eigenvalue λ of the operator Ais not greater than 2. The following inequalities for the modules of the eigenvalues are true:

$$\rho(A) = |\lambda_1| < |\lambda_2| \le |\lambda_3| < |\lambda_4| \le \ldots$$

(The eigenvalues of A are repeated according to multiplicity in the above numeration.) Moreover, $\lambda_1 = \rho(A)$ is a simple positive eigenvalue of A. If n is even, then λ_n is real. For every pair $\lambda_i \lambda_{i+1}$ (i = 2, 4, 6, ...) the following equality is true: $\arg(\lambda_{i+1}) = -\arg(\lambda_i)$.

• Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).

REFERENCES

- Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).

REFERENCES

- Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).
- Kalafati P.D., Oscillatory properties of fundamental functions in third-order boundary-value problems, Dokl. Akad. Nauk SSSR, 143 (1962), 518-521.

- Berman A. and Plemmons R.J., Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York (1979).
- Gantmacher F.R. and Krein M.G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore (2002).
- Kalafati P.D., Oscillatory properties of fundamental functions in third-order boundary-value problems, Dokl. Akad. Nauk SSSR, 143 (1962), 518-521.
- Tam B.S., A cone-theoretic approach to the spectral theory of positive linear operators: the finite-dimensional case, Taiwanese J. Math., **5** (2001), 207–277.