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Definition 1
Let A be a linear operator acting in the space R”. In this case we can
define operators @ A and NA (j =1, ..., n), i.e. the j-th tensor and

the j-th exterior power of the operator A. They acts, respectively, in the
space @/R" = R” and NMVR" = RS,
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Definitions

Definition 1

Let A be a linear operator acting in the space R”. In this case we can
define operators @A and VA (j =1, ..., n), i.e. the j-th tensor and
the j-th exterior power of the operator A. They acts, respectively, in the
space ®/R" = R” and NR" = RS

If e1, ..., enis a basis in R”, then all the possible exterior products of the
form ej A oaa B G where 1 < j; < ... <i; < n, form a basis in the jth
exterior power A/R” of the space R”.
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Eigenvalues of exterior product

Let {\;}7_; be all eigenvalues of the operator A, repeated according to
multiplicity. Then all the possible products of the type {\; ... \; }, where
1< <...<i;<n, form all the possible eigenvalues of the exterior
power AJA, repeated according to multiplicity [3].
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@ Let a linear operator A: R" — R”" be defined by a n x n matrix A in
the basis e, ..., e,. Then the matrix of its jth exterior power A/ A
in the basis, which consists of all the possible exterior products of the
form ey A...Ae; (1<i1<...<i < n), coincides with the jth
compound matrix AU) of the initial matrix A. (Here the jth
compound matrix AU) is a C) x G matrix, which consists of all the
minors of the jth order of the initial matrix A. The minors are
numerated in the lexicographic order.)
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@ Let a linear operator A: R" — R”" be defined by a n x n matrix A in
the basis e, ..., e,. Then the matrix of its jth exterior power A/ A
in the basis, which consists of all the possible exterior products of the
form ey A...Ae; (1<i1<...<i < n), coincides with the jth
compound matrix AU) of the initial matrix A. (Here the jth
compound matrix AU) is a C) x G matrix, which consists of all the
minors of the jth order of the initial matrix A. The minors are
numerated in the lexicographic order.)

@ In the case, when the operator A is defined by its matrix, the
statement about the eigenvalues of its jth exterior power AJA turns
into the Kronecker theorem (see [1], p. 80, theorem 23) about the
eigenvalues of the jth compound matrix. The proof of the Kronecker
theorem without using exterior products is given in monograph [1].
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A set K C R" is called a proper cone, if
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A set K C R" is called a proper cone, if

@ it is a convex cone
i.e. forany x,y € K, « >0 we have x +y, ax € K
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A set K C R" is called a proper cone, if

@ it is a convex cone
i.e. forany x,y € K, « >0 we have x +y, ax € K

@ it is pointed
ie. KN(—K)={0}
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A set K C R" is called a proper cone, if

@ it is a convex cone

i.e. forany x,y € K, « >0 we have x +y, ax € K
@ it is pointed

ie. KN(—K)={0}
@ it is closed and solid

i.e. int(K) # 0
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A set K C R" is called a proper cone, if
@ it is a convex cone
i.e. forany x,y € K, « >0 we have x +y, ax € K
@ it is pointed
ie. KN(—K)={0}
@ it is closed and solid

i.e. int(K) # 0

A linear operator A : R” — R" is called K—primitive, if there exists a
proper cone K, such that AK C K and the only nonempty subset of J(K)
which is left invariant by A is {0}.
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Generalized Oscillatory operators

Generalized Oscillatory

A linear operator A is called generalized oscillatory if it is K-primitive with
respect to a proper cone K; C R”, and for every j (1 < j < n) its j-th
exterior power AJA is K-primitive with respect to a proper cone K; C RS,
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Generalized Oscillatory operators

Generalized Oscillatory

A linear operator A is called generalized oscillatory if it is K-primitive with
respect to a proper cone K; C R”, and for every j (1 < j < n) its j-th ‘
exterior power AJA is K-primitive with respect to a proper cone K; C RS,

Generalized Even (Odd) Oscillatory

A linear operator A is called generalized even (odd) oscillatory if for every
even (respectively odd) j (1 <j < n) its j-th exterior power NV A is
K-primitive with respect to a proper cone K; C RS,
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Primitive Matrix

A matrix A is called non-negative (positive), if
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Primitive Matrix

A matrix A is called non-negative (positive), if

o all its elements a;; are nonnegative (positive).
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A matrix A is called non-negative (positive), if
o all its elements a;; are nonnegative (positive).

A nonnegative matrix A is called primitive, if
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Primitive Matrix

A matrix A is called non-negative (positive), if
o all its elements a;; are nonnegative (positive).
A nonnegative matrix A is called primitive, if

@ there exists such a natural number m, that the matrix A™ is positive.
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Primitive Matrix

A matrix A is called non-negative (positive), if
o all its elements a;; are nonnegative (positive).
A nonnegative matrix A is called primitive, if

@ there exists such a natural number m, that the matrix A™ is positive.

K—primitive

If the matrix A of a linear operator A : R” — R” is primitive, then A is
K-primitive with respect to the cone K of all nonnegative vectors from
the space R”. The statement, that if the matrix A is similar to a primitive
matrix, then the corresponding operator A is K-primitive with respect to
some polyhedral cone K in R”, easily follows from the above reasoning. In
some special cases we can see, if the matrix A is similar to a primitive
matrix, just looking at its structure.
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Theorem 1

Let a linear operator A : R" — R" be generalized oscillatory. Then all the

eigenvalues of the operator A are simple, positive and different in modulus
from each other:

p(A)=X1>X>...> X\, >0.
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Theorem 2
Let a linear operator A : R" — R" be even generalized oscillatory. Then
the algebraic multiplicity m(\) of any eigenvalue A of the operator A is
not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

p(A) = [A1] < [X2] < A3 < |hal <.

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, for every pair A\iXit1 (i =1, 3, 5, ...) the
following equality is true: arg(\i+1) = —arg(\;). If n is odd, then X\, is
real.
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Theorem 3

Let a linear operator A : R” — R" be odd generalized oscillatory. Then the
algebraic multiplicity m(\) of any eigenvalue \ of the operator A is not
greater than 2. The following inequalities for the modules of the
eigenvalues are true:

p(A) = [A1] < A2 < A3 < |ha <.

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, \1 = p(A) is a simple positive eigenvalue of A. If
n is even, then \, is real. For every pair \i\j11 (i =2, 4, 6, ...) the
following equality is true: arg(\j11) = —arg(\;).
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Compound Matrix

Let A be an n x n matrix, then the jth compound matrix AU)of the matrix
A is defined as the matrix of order G, x CJ, which consists of all the
minors of the jth order of the initial matrix A. The minors are numerated
in the lexicographic order.
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Compound Matrix

Let A be an n x n matrix, then the jth compound matrix AU)of the matrix
A is defined as the matrix of order G, x CJ, which consists of all the
minors of the jth order of the initial matrix A. The minors are numerated
in the lexicographic order.

For Example:
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Compound Matrix

Let A be an n x n matrix, then the jth compound matrix AU)of the matrix
A is defined as the matrix of order G, x CJ, which consists of all the
minors of the jth order of the initial matrix A. The minors are numerated
in the lexicographic order.

For Example: If

-3 -1 1 2
1 -1 3 1
A= 2 1 1 1
3 0 0 -2
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Then
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Then
4 -—-10 -5 -2 1 -5
-1 -5 -7 -2 -3 -1
A _ 3 -3 -3 0 1 -1
3 -5 -1 -4 -2 2
3 9 —4 0 1 -3
-3 -3 -5 0 -1 -1
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J—sign-symmetric Matrix

J —sign-symmetric

A matrix A of a linear operator A : R” — R" is called [J—sign-symmetric,
if there exists such a subset 7 C {1, ..., n}, that both the conditions (a)
and (b) are true:

(a) the inequality a; < 0 follows from the inclusions i € 7,

Jj€A{l, ..., n}\ J and from the inclusions j € 7,
i€{l, ..., n}\ J for any two numbers i, J;

(b) one of the inclusions i € J, j € {1, ..., n}\J orj € J,
ie{l, ..., n}\ J follows from the strict inequality a; < 0.
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strictly 7 —sign-symmetric Matrix

strictly J —sign-symmetric
A matrix A is called strictly J—sign-symmetric, if A does not contain zero

elements and there exists such a subset 7 C {1, ..., n}, that the
inequality a;; < 0 is true if and only if one of the numbers i, j belongs to
the set 7, and the other belongs to the set {1, ..., n}\ J.
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Example 1: If
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Example 1: If

30 41 3 16
41 61 3 20
A= 3 3 1 2
16 20 2 10
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Example 1: If
30 41 3 16
41 61 3 20
3 3 1 2
16 20 2 10

A=

Then

149 -33 —-56 —-60 —156 12

-33 21 12 32 34 -10
-56 12 44 22 90 -2
—-60 32 22 52 62 —14
—-156 34 90 62 210 10

12 -10 -2 -14 -10 6
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Example 1: If
30 41 3 16
41 61 3 20
3 3 1 2
16 20 2 10

A=

Then

149 -33 —-56 —-60 —156 12

-33 21 12 32 34 -10
-56 12 44 22 90 -2
—-60 32 22 52 62 —14
—-156 34 90 62 210 10

12 -10 -2 -14 -10 6

where the set J is equal to {1,6} or {2,3,4,5}.
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Example 2: If
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Example 2: If

2 5 4 3
A 3 36 25 12
3 25 18 9
3 12 9 6
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Example 2: If
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A 3 36 25 12
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Example 2: If

Then

2 5 4 3
3 36 25 12
3 25 18 9
3 12 9 6

57 38 15 —-19 -48
35 24 9 —-10 -30
9 6 3 -3 -6
-33 =21 -9 23 24
—72 —48 —-18 24 72
-39 -2t -9 9 42
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Example 2: If

2 5 4 3
3 36 25 12
3 25 18 9
3 12 9 6

Then
57 38 15 —-19 -48

35 24 9 —-10 -30
9 6 3 -3 -6
-33 =21 -9 23 24
—72 —48 —-18 24 72
-39 -2t -9 9 42

A —

where the set J is equal to {1,2,3} or {4,5,6}.
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J—sign-symmetric primitive Matrix

o If the matrix A is J—-sign-symmetric (strictly J—sign-symmetric),
then it is similar to some nonnegative (respectively positive) matrix.
Moreover, the matrix of the similarity transformation is diagonal, and
its diagonal elements are equal to +1.
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J—sign-symmetric primitive Matrix

o If the matrix A is J—-sign-symmetric (strictly J—sign-symmetric),
then it is similar to some nonnegative (respectively positive) matrix.
Moreover, the matrix of the similarity transformation is diagonal, and
its diagonal elements are equal to +1.

@ It's easy to see, that if the matrix A is J—sign-symmetric, and the
matrix A" is strictly J—sign-symmetric for some natural number m,
then the matrix A is similar to some primitive matrix with the
diagonal matrix of the similarity transformation. Let us call such
matrices J —sign-symmetric primitive. In this case the linear operator
A:R" — R”, defined by the matrix A, is K-primitive with respect to
some cone spanned on the vectors €], ..., €, where each vector € is
equal either to ej or to —e; (i=1, ..., n).
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Theorem 1’

Let the matrix A of a linear operator A : R" — R" be J—sign-symmetric
primitive, and let the jth compound matrix AY) be also J -sign-symmetric
primitive for every j (1 < j < n). Then all the eigenvalues of the operator
A are simple, positive and different in modulus from each other:

p(A)=X1>X>...> A\, >0.

( ON GENERALIZED EVEN AND ODD 0OSC May 26, 2010 18 / 20



Theorem 2’

Let the jth compound matrix AU) of the matrix A of a linear operator

A:R" — R" be J-sign-symmetric primitive for every even j (1 < j < n).
Then the algebraic multiplicity m()\) of any eigenvalue A of the operator A

is not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

p(A) = [A1] < [A2] < [As] < |ha < ...

(The eigenvalues of A are repeated according to multiplicity in the above

numeration.) Moreover, for every pair A\iXit1 (i =1, 3, 5, ...) the

following equality is true: arg(\i+1) = —arg(\;). If n is odd, then X\, is

real.
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Theorem 3

Let the jth compound matrix AY) of the matrix A of a linear operator
A:R" — R" be J-sign-symmetric primitive for every odd j (1 < j < n).
Then the algebraic multiplicity m()\) of any eigenvalue A of the operator A
is not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

p(A) = [A1] < [A2] < M| < |Xa <.

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, \1 = p(A) is a simple positive eigenvalue of A. If
n is even, then A\, is real. For every pair A\iXiy1 (i =2, 4, 6, ...) the
following equality is true: arg(Aiy1) = —arg()\;).
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