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Definitions

Definition 1

Let A be a linear operator acting in the space Rn. In this case we can
define operators ⊗jA and ∧jA (j = 1, . . . , n), i.e. the j-th tensor and
the j-th exterior power of the operator A. They acts, respectively, in the

space ⊗jRn = Rnj and ∧jRn = RC j
n .

If e1, . . . , en is a basis in Rn, then all the possible exterior products of the
form ei1 ∧ . . . ∧ eij , where 1 ≤ i1 < . . . < ij ≤ n, form a basis in the jth

exterior power ∧jRn of the space Rn.
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Eigenvalues of exterior product

Theorem

Let {λi}ni=1 be all eigenvalues of the operator A, repeated according to
multiplicity. Then all the possible products of the type {λi1 . . . λij}, where
1 ≤ i1 < . . . < ij ≤ n, form all the possible eigenvalues of the exterior
power ∧jA, repeated according to multiplicity [3].
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Let a linear operator A : Rn → Rn be defined by a n × n matrix A in
the basis e1, . . . , en. Then the matrix of its jth exterior power ∧jA
in the basis, which consists of all the possible exterior products of the
form ei1 ∧ . . . ∧ eij (1 ≤ i1 < . . . < ij ≤ n), coincides with the jth

compound matrix A(j) of the initial matrix A. (Here the jth
compound matrix A(j) is a C j

n × C j
n matrix, which consists of all the

minors of the jth order of the initial matrix A. The minors are
numerated in the lexicographic order.)

In the case, when the operator A is defined by its matrix, the
statement about the eigenvalues of its jth exterior power ∧jA turns
into the Kronecker theorem (see [1], p. 80, theorem 23) about the
eigenvalues of the jth compound matrix. The proof of the Kronecker
theorem without using exterior products is given in monograph [1].
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Proper Cone

A set K ⊂ Rn is called a proper cone, if

it is a convex cone
i.e. for any x , y ∈ K , α ≥ 0 we have x + y , αx ∈ K

it is pointed
i.e. K ∩ (−K ) = {0}
it is closed and solid
i.e. int(K ) 6= ∅

K –primitive

A linear operator A : Rn → Rn is called K –primitive, if there exists a
proper cone K , such that AK ⊆ K and the only nonempty subset of ∂(K )
which is left invariant by A is {0}.
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Generalized Oscillatory operators

Generalized Oscillatory

A linear operator A is called generalized oscillatory if it is K -primitive with
respect to a proper cone K1 ⊂ Rn, and for every j (1 < j ≤ n) its j-th

exterior power ∧jA is K -primitive with respect to a proper cone Kj ⊂ RC j
n .

Generalized Even (Odd) Oscillatory

A linear operator A is called generalized even (odd) oscillatory if for every
even (respectively odd) j (1 ≤ j ≤ n) its j-th exterior power ∧jA is

K -primitive with respect to a proper cone Kj ⊂ RC j
n .
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Primitive Matrix

A matrix A is called non-negative (positive), if

all its elements aij are nonnegative (positive).

A nonnegative matrix A is called primitive, if

there exists such a natural number m, that the matrix Am is positive.

K –primitive

If the matrix A of a linear operator A : Rn → Rn is primitive, then A is
K -primitive with respect to the cone K+ of all nonnegative vectors from
the space Rn. The statement, that if the matrix A is similar to a primitive
matrix, then the corresponding operator A is K -primitive with respect to
some polyhedral cone K in Rn, easily follows from the above reasoning. In
some special cases we can see, if the matrix A is similar to a primitive
matrix, just looking at its structure.
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Theorem 1

Let a linear operator A : Rn → Rn be generalized oscillatory. Then all the
eigenvalues of the operator A are simple, positive and different in modulus
from each other:

ρ(A) = λ1 > λ2 > . . . > λn > 0.
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Theorem 2

Let a linear operator A : Rn → Rn be even generalized oscillatory. Then
the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is
not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

ρ(A) = |λ1| ≤ |λ2| < |λ3| ≤ |λ4| < . . . .

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, for every pair λiλi+1 (i = 1, 3, 5, . . .) the
following equality is true: arg(λi+1) = −arg(λi ). If n is odd, then λn is
real.
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Theorem 3

Let a linear operator A : Rn → Rn be odd generalized oscillatory. Then the
algebraic multiplicity m(λ) of any eigenvalue λ of the operator A is not
greater than 2. The following inequalities for the modules of the
eigenvalues are true:

ρ(A) = |λ1| < |λ2| ≤ |λ3| < |λ4| ≤ . . . .

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, λ1 = ρ(A) is a simple positive eigenvalue of A. If
n is even, then λn is real. For every pair λiλi+1 (i = 2, 4, 6, . . .) the
following equality is true: arg(λi+1) = −arg(λi ).
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Compound Matrix

Let A be an n× n matrix, then the jth compound matrix A(j)of the matrix
A is defined as the matrix of order C j

n × C j
n, which consists of all the

minors of the jth order of the initial matrix A. The minors are numerated
in the lexicographic order.

For Example: If

A =


−3 −1 1 2
1 −1 3 1
2 1 1 1
3 0 0 −2

 .
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Then

A(2) =



4 −10 −5 −2 1 −5
−1 −5 −7 −2 −3 −1
3 −3 −3 0 1 −1
3 −5 −1 −4 −2 2
3 9 −4 0 1 −3
−3 −3 −5 0 −1 −1

 .

P. Sharma1, O. Y. Kushel2 (1 Department of Mathematics University of Rajasthan, Jaipur, INDIA sharmapatanjali@rediffmail.com 2 Department of Mechanics and Mathematics Belorussian State University, BELARUS kushel@mail.ru )ON GENERALIZED EVEN AND ODD OSCILLATORY OPERATORSMay 26, 2010 12 / 20



Then

A(2) =



4 −10 −5 −2 1 −5
−1 −5 −7 −2 −3 −1
3 −3 −3 0 1 −1
3 −5 −1 −4 −2 2
3 9 −4 0 1 −3
−3 −3 −5 0 −1 −1

 .

P. Sharma1, O. Y. Kushel2 (1 Department of Mathematics University of Rajasthan, Jaipur, INDIA sharmapatanjali@rediffmail.com 2 Department of Mechanics and Mathematics Belorussian State University, BELARUS kushel@mail.ru )ON GENERALIZED EVEN AND ODD OSCILLATORY OPERATORSMay 26, 2010 12 / 20



J –sign-symmetric Matrix

J –sign-symmetric

A matrix A of a linear operator A : Rn → Rn is called J –sign-symmetric,
if there exists such a subset J ⊆ {1, . . . , n}, that both the conditions (a)
and (b) are true:

(a) the inequality aij ≤ 0 follows from the inclusions i ∈ J ,
j ∈ {1, . . . , n} \ J and from the inclusions j ∈ J ,
i ∈ {1, . . . , n} \ J for any two numbers i , j ;

(b) one of the inclusions i ∈ J , j ∈ {1, . . . , n} \ J or j ∈ J ,
i ∈ {1, . . . , n} \ J follows from the strict inequality aij < 0.
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strictlyJ –sign-symmetric Matrix

strictly J –sign-symmetric

A matrix A is called strictly J –sign-symmetric, if A does not contain zero
elements and there exists such a subset J ⊆ {1, . . . , n}, that the
inequality aij < 0 is true if and only if one of the numbers i , j belongs to
the set J , and the other belongs to the set {1, . . . , n} \ J .

P. Sharma1, O. Y. Kushel2 (1 Department of Mathematics University of Rajasthan, Jaipur, INDIA sharmapatanjali@rediffmail.com 2 Department of Mechanics and Mathematics Belorussian State University, BELARUS kushel@mail.ru )ON GENERALIZED EVEN AND ODD OSCILLATORY OPERATORSMay 26, 2010 14 / 20



Example 1: If

A =


30 41 3 16
41 61 3 20
3 3 1 2

16 20 2 10

 .

Then

A(2) =



149 −33 −56 −60 −156 12
−33 21 12 32 34 −10
−56 12 44 22 90 −2
−60 32 22 52 62 −14
−156 34 90 62 210 −10

12 −10 −2 −14 −10 6

 .

where the set J is equal to {1, 6} or {2, 3, 4, 5}

.
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.
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Example 2: If

A =


2 5 4 3
3 36 25 12
3 25 18 9
3 12 9 6

 .

Then

A(2) =



57 38 15 −19 −48 −27
35 24 9 −10 −30 −18
9 6 3 −3 −6 −3
−33 −21 −9 23 24 9
−72 −48 −18 24 72 42
−39 −27 −9 9 42 27

 .

where the set J is equal to {1, 2, 3} or {4, 5, 6}

.
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J –sign-symmetric primitive Matrix

If the matrix A is J –sign-symmetric (strictly J –sign-symmetric),
then it is similar to some nonnegative (respectively positive) matrix.
Moreover, the matrix of the similarity transformation is diagonal, and
its diagonal elements are equal to ±1.

It’s easy to see, that if the matrix A is J –sign-symmetric, and the
matrix Am is strictly J –sign-symmetric for some natural number m,
then the matrix A is similar to some primitive matrix with the
diagonal matrix of the similarity transformation. Let us call such
matrices J –sign-symmetric primitive. In this case the linear operator
A : Rn → Rn, defined by the matrix A, is K -primitive with respect to
some cone spanned on the vectors e ′1, . . . , e ′n, where each vector e ′i is
equal either to ei or to −ei (i = 1, . . . , n).
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Theorem 1
′

Let the matrix A of a linear operator A : Rn → Rn be J –sign-symmetric
primitive, and let the jth compound matrix A(j) be also J –sign-symmetric
primitive for every j (1 < j ≤ n). Then all the eigenvalues of the operator
A are simple, positive and different in modulus from each other:

ρ(A) = λ1 > λ2 > . . . > λn > 0.
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Theorem 2
′

Let the jth compound matrix A(j) of the matrix A of a linear operator
A : Rn → Rn be J –sign-symmetric primitive for every even j (1 ≤ j ≤ n).
Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A
is not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

ρ(A) = |λ1| ≤ |λ2| < |λ3| ≤ |λ4| < . . . .

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, for every pair λiλi+1 (i = 1, 3, 5, . . .) the
following equality is true: arg(λi+1) = −arg(λi ). If n is odd, then λn is
real.
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Theorem 3
′

Let the jth compound matrix A(j) of the matrix A of a linear operator
A : Rn → Rn be J –sign-symmetric primitive for every odd j (1 ≤ j ≤ n).
Then the algebraic multiplicity m(λ) of any eigenvalue λ of the operator A
is not greater than 2. The following inequalities for the modules of the
eigenvalues are true:

ρ(A) = |λ1| < |λ2| ≤ |λ3| < |λ4| ≤ . . . .

(The eigenvalues of A are repeated according to multiplicity in the above
numeration.) Moreover, λ1 = ρ(A) is a simple positive eigenvalue of A. If
n is even, then λn is real. For every pair λiλi+1 (i = 2, 4, 6, . . .) the
following equality is true: arg(λi+1) = −arg(λi ).
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