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Orthogonal Quotient Matrices

A areal mxn matrix

X .+ areal mxm* orthogonal matrix

— T —
Xm* _[Xl 9 X2 9 ooe o Xm*] ° Xm* Xm* - I.

Y « areal nxn* orthogonal matrix
Yn*=[yISYZ9 cee ﬂyn*] 9 Yn*TYn*=I'
Then the m*xn* matrix

(Xm*)TAYn* = ( XiTAYj )

1s called an “Orthogonal Quotient Matrix™ .




Rayleigh Quotient Matrices

S a symmetric nxn matrix

Y, a real nxk orthogonal matrix
Y =[¥iVas oWl Y TY, =1
Then the kxk matrix
Y ' SY = (y;i Syj)
1s called a “Rayleigh Quotient Matrix” .

Matrices of this form plays important role in the
Rayleigh-Ritz procedure and in Krylov subspace methods.




Example: Lanczos Algorithm

YTSY, =T,
T, a real kxk tridiagonal matrix

Y, a real nxk orthogonal matrix

The columns of Y form an orthonormal basis
of a Krylov subspace,

Span { x, Sx, S%x, ..., SKIx },

for some starting vector x.




Ky Fan’s Maximum Principle (1949)T

considers the problem of maximizing the trace of

a Rayleigh Quotient Matrix .

max { trace(Y,"SY,)|Y, €Y, }

S a symmetric positive semi-definite nxn matrix.

Yk denotes the set of orthogonal nxk matrices.

'I' Emeritus professor Ky Fan died in Santa Barbara on March 22, 2010, at age 95.



The Eckart-Young Theorem (1936)

considers the approximation of one matrix

by another matrix of lower rank

minimize F(B)=| A - B||*
subject to rank(B)<k

( Also called the Schmidt—Mirsky Theorem. )




The Frobenius matrix norm

A=(aij) areal mxn matrix, m>n.
Il = (22 ()"

|A||§* = trace(ATA) = trace( AAT)
=(01)*t+ (0’ + ... +(o,)%,

where
012622000 ZGHZO,

denote the singular values of A .




The Singular Value Decomposition

A=UX V!
2 =diag {6,,06,,...,0,} , p=min{m,n}
U=[u,uy, ... ,u] , ulu=1
V=[Vi,Vy, eee , V], Viv=]

AV=UX AtU=VZX

= o o T o= ° ° .=
AVj o; u; , A U; = C; V; i=1,...,p.



Rank-k truncated SVD
T (A)=U, D, V!
D, =diag {G,, 0y ... » O} .
U =M,u, .,u] , U'U=I
Vi=[Visvys eeesv] » VIV =1

The matrix T, (A) is called a rank-k truncated SVD of A .



The Eckart-Young Theorem (1936)
says that the “truncated SVD” matrix

T (A)=U,DV,!
solves the least norm problem

minimize F(B)=| A - B||*
subject to rank(B) <k

( Also called the Schmidt—-Mirsky Theorem. )



A

X
Y

Unitarily Invariant matrix norms

= ( A5 ) areal mxn matrix,

areal mxm unitary matrix, X'X=1.

areal nxn unitary matrix, Y'Y =1.

IA] = [XTA[ =AY =[X"AY|




Unitarily Invariant matrix norms
1A |lg = ((6)*+ (6 + ... +(6,)*)”Z  Frobenius

HAH = ((Gl)p + (o )P +... + (o )P )1/2 Schatten p-norm

1<p<w

HAH=GI+GZ+...+Gk Ky Fan k-norm, k=1,..., n.

HAHtr=Gl+GZ+"°+Gn the trace norm.

HAH2=GI= max {Gj} the 2- norm.

j=1,...,n




Mirsky Theorem (1960)

says that the “truncated SVD” matrix
T (A)=U, DV, '

solves the least norm problem

minimize F(B)=||A - B|
subjectto rank(B) <k,

for any unitarily invariant matrix norm.



Rank-k Matrices

B =X, RY,T

where

R 1sa kxk matrix
Xk=[X1,X2,... ,Xk] . XkTXk=I

Yk=[y1’y2’ coe ,yk] . YkTYk=I



The Eckart—Young Problem

can be rewritten as

minimize FB)=|A-X, RY,' HFZ

S“bjeCt to XkT Xk — I and YkT Yk — I .

where B=X,RY,! and R isa kxk matrix.



Theorem: Let X, and Y, be a pair of

orthogonal matrices as obove, then the related

“Orthogonal Quotients Matrix”
X "AY, = (x"Ay;)

solves the problem

minimize F(R)=|A-X; RY," ||



Notation:

X, - denotes the set of all real m x k

orthogonal matrices X, ,
Xk=[X1,X2,... 9Xk] . XkTXk=I

Y, - denotes the set of all real n x k

orthogonal matrices Y, ,

Yk=[Y19Y2a vee 5 Vil YkTYk=I



Corollary 1: The Eckart—Young Problem

can be rewritten as
minimize F(X,_,Y,)=]|A - X, R, Y, 7|

subjectto X, X, and Y, €Y, ,
where Rk 1s the related Orthogonal Quotients Matrix

Rk — XkTAYk .



The Orthogonal Quotients Equality

For any pair of orthogonal matrices,
X, €X, and Y, €Y, ,
1A - X R Y g = 1AlE? - IR [
where Ry is the related orthogonal quotients matrix

Rk — XkTAYk .



Corollary 2: The Eckart—Young Problem
minimize F(X,,Y,)=|A - X; Ry Y T||*>
subject to X, €X, and Y, €Y,

1s equivalent to

maximize ||XszAxYk||F2
subject to X, €X, and Y, €Y, .
The SVD matrices Uk and Vk solves both problems,

giving the optimal values of o>+ ... + o2

and o>+ 0o,”+... +c. %, respectively.



Returning to symmetric matrices

Can we extend the
Orthogonal Quotients Equality

to Ky Fan extremum problems ?



The Spectral Decomposition
S=(Sij) a symmetric positive semi-definite n x n matrix
With eigenvalues M ZAh 22A, 20

and eigenvectors VieVyy e oV,

Svj= AVis, j=1,..,m. SV=VD
V=[VisVyseeesv,] , VIV=VVI=]
D=diag {A{,Ay 5 oo JA,}

SZVDVT=Z7\,jVjVjT



Ky Fan’s Maximum Principle

S a symmetric positive semi-definite n X n matrix

Y, the set of orthogonal nx k matrices

A+ ... +A, = max { trace(Y,"SY,) | Y, €Y, }
Solution 1s obtained for the Spectral matrix

Vi=[VisVs e 5V ] o

which 1s related to the largest k eigenvalues.



Ky Fan’s Minimum Principle

S a symmetric n X n matrix .

Y, the set of orthogonal nx k matrices .

Mpgsr + oo TA,=min{trace(Y,TSY,)|Y, €Y.}
Solution 1s obtained for the Spectral matrix

Vk= [Vn-k+1 9 o00 o Vn] ’

which 1s related to the smallest k eigenvalues.



The Symmetric Quotients Equality

Given

S a symmetric nxn matrix

Y,  anorthogonal nxk matrix

Sk = YkT S Yk the related “Rayleigh quotient matrix”™
Then

trace(S-Y, S, Y, T)=trace(S) - trace(S, ),

where  trace(Sy) = trace(Y,'SY,)=2y,'Sy; .



Corollary 1: Ky Fan’s maximum problem

maximize trace(Y,SY,T)
subject to Y €Y, ,
1s equivalent to
minimize trace(S-Y, S, Y,")

subject to Y. €Y, .

The Spectral matrix Vk= [V{sV5s e« V)| solves both problems,

giving the optimal values of A, + ... +A,

and A+ ... +TA, , respectively.

n °



Compare with the Eckart—Young Problems
minimize F(X,,Y,)=|A - X; Ry Y T||*>
subject to X, €X, and Y, €Y,

1s equivalent to

maximize ||XszAxYk||F2
subject to X, €X, and Y, €Y, .
The SVD matrices Uk and Vk solves both problems,

giving the optimal values of o>+ ... + o2

and o>+ 0o,”+... +c. %, respectively.



The Eckart—Young Theorem
and Ky Fan’s maximum principle

are “two sides of the same coin”.

Is there an extended maximum principle
( for rectangular matrices) from which

one can derives both results ?



Corollary 2: Ky Fan’s minimum problem

minimize trace(Y,SY,T)

subject to Y, €Y, ,

1s equivalent to

maximize trace(S-Y,'S,Y,)

subject to Y. eY, .

The matrix Vk= |V, k19 oo » V| solves both problems,

giving the optimal value of A _,,;+... + A

n

and A, +... +A_ , , respectively.



Can we extend Ky Fan’s principles

from eigenvalues of symmetric matrices

to singular values of rectangular matrices ?



Notation: 1<m*<m, 1<n*<n,

X . - denotes the set of all real mxm*

m

orthogonal matrices X . ,

X *=[X1,X2, coso 9Xm*] | Xm*TXm*=I

m

Y . - denotes the set of all real nxn*

orthogonal matrices Y .,

Y o« T [Vi5Yas eoe s Vuel YH*TY* =]



Reminder:

Given X +€X,+ and Y €Y .,

the m*xn* matrix
(Xm*)TAYn* = ( XiTAYj )

is called “Orthogonal Quotients Matrix”.



Notations :
The singular values of the
Orthogonal Quotients Matrix
(Xm*)TAYn* = ( XiTAyJ' )

are denoted as

NN 2... 2N 20,
where

k=min { m*, n* }



Question:

Which choice of orthogonal matrices
Xm* Exm* and Yl’l* EYm* o

maximizes (or minimizes ) the sum

MIPt (MYP + ... + ()P

where p>0 1sa given positive constant.

(Maximizing (or minimizing) the “Schatten p-norm” of (X_.)TAY . )



An Extended Maximum Principle:
The SVD matrices

Um*=[u1,u2, oo su,.] and Vn*=[V1,V2, coe o Vi)

solve the problem
maximize F(X_.,Y )=M)P+MYP + ... + ()P

subjectto X _.€X - and Y «€Y, ,

for any positive power p >0,

giving the optimal value of  (o)P+ (G,)P + ... + ()P .




An Extended Maximum Principle:

The SVD matrices

Um* = [u;yuy4 «e. yu.] and Vn* = [V{sVys see 5V i
solve the problem
maximize F(X ., Y .)=||(X_)TAY .||

subjectto X _.eX,. and Y €Y« ,

for any unitarily invariant matrix norm.




The proot

1s based on “rectangular” versions of

Cauchy Interlace Theorem ,

and

Poincare Separation Theorem .

The validity for Unitarily Invariant matrix norms

follows from

Ky Fan Dominance Theorem .



Example 1: When p=1 the SVD matrices
U «=[u,u, ... ,u,.] and Vn* = [V{sVys ese 5 Vi

m

solve the “Rectangular Ky Fan problem”

maximize F(X _.,Y . )=n;+ N, +... + 1N,

subjectto X _.eX . and Y €Y, ,

giving the optimal value of

o,to,t...+t0op .




Example 2: When p=2 the SVD matrices

Um*=[u1,u2, ee. su,.] and Vn*=[V1,V2, coe 5 Vou]

solve the “rectangular Eckart—Young problem”

maximize F(X .,Y .)=|| (Xm*)TAYn* ||F2

m* ?

SllbjeCt tO Xm* Exm* and Yn* EYH* o

giving the optimal value of

(c)*+ (cy)* +... + ()" .




An Extended Minimum Principle

Question: Can we prove a similar minimum

principle ?

Answer: Yes, but building the solution matrices
1s more subtle .

The main difficulty here is to characterize cases

in which the optimal value differs from zero.




An Extended Minimum Principle:

Here we consider the problem

minimize F(X_ .,Y ) =0)P+ )P + ... + (1)
subjectto X .eX . and Y .e€Y,- ,

for any positive power p>0.

The solution matrices are obtained by deleting some
columns from the SVD matrices

U=u,uy, ... ,u_]and V=[v,,v,, «.. ,V,].




An Extended Minimum Principle:
Here we consider the problem

minimize F(X_.,Y .)=||(X )'AY .||

m* 9

subjectto X .eX . and Y .eY,.,

for any unitarily invariant matrix norm.

The solution matrices are obtained by deleting some

columns from the SVD matrices

U=u,uy, ... ,u_]and V=[v,,v,, «.. ,V,].
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The END

Thank You



Example 1*: When p=1 and m*=n*=Kk

the SVD matrices

Uk=[ll1,ll2, ceoe ,uk] and Vk=[V1,V2, L) ,Vk]

solve the maximum trace problem

maximize F(X,,Y,)=trace ( (X)'AY,)

subjectto X, eX, and Y, €Y, ,

giving the optimal value of

co,+to,t+...+o .

* See also Horn & Johnson, “Topics in Matrix Analysis”, p. 195.




