The Eckart-Young theorem and

Ky Fan's maximum principle:

Two sides of the same coin

By

Achiya Dax

Hydrological Service, Jerusalem, Israel

e-mail: dax20@water.gov.il

Outline †

- * Orthogonal Quotients Matrices.
- * The Eckart-Young Theorem.
- * The Orthogonal Quotients Equality.
- * Ky Fan's extremum principles.
- * Extended Extremum Principles.
- † A. Dax, "On extremum properties of orthogonal quotients matrices", Lin. Alg. and its Applic., 432(2010), pp. 1234 1257.

Orthogonal Quotient Matrices

A a real mxn matrix

X_{m*} a real mxm* orthogonal matrix

$$X_{m^*} = [x_1, x_2, ..., x_{m^*}], X_{m^*}^T X_{m^*} = I.$$

 Y_{n*} a real $n \times n*$ orthogonal matrix

$$Y_{n*} = [y_1, y_2, ..., y_{n*}], Y_{n*}^T Y_{n*} = I.$$

Then the m*x n* matrix

$$(\mathbf{X}_{m^*})^{\mathrm{T}}\mathbf{A}\mathbf{Y}_{n^*} = (\mathbf{x}_i^{\mathrm{T}}\mathbf{A}\mathbf{y}_j)$$

is called an "Orthogonal Quotient Matrix".

Rayleigh Quotient Matrices

S a symmetric nxn matrix

Y_k a real nxk orthogonal matrix

$$Y_{k} = [y_{1}, y_{2}, ..., y_{k}], Y_{k}^{T} Y_{k} = I.$$

Then the kxk matrix

$$Y_k^T S Y_k = (y_i^T S y_j)$$

is called a "Rayleigh Quotient Matrix".

Matrices of this form plays important role in the

Rayleigh-Ritz procedure and in Krylov subspace methods.

Example: Lanczos Algorithm

$$Y_k^T S Y_k = T_k$$

T_k a real kxk tridiagonal matrix

Y_k a real nxk orthogonal matrix

The columns of Y_k form an orthonormal basis of a Krylov subspace,

Span
$$\{x, Sx, S^2x, ..., S^{k-1}x\},\$$

for some starting vector \mathbf{x} .

Ky Fan's Maximum Principle (1949)[†]

considers the problem of maximizing the trace of a Rayleigh Quotient Matrix.

$$\max \left\{ \operatorname{trace}(Y_k^T S Y_k) \middle| Y_k \in Y_k \right\}$$

- S a symmetric positive semi-definite nxn matrix.
- Y_k denotes the set of orthogonal nxk matrices.
- † Emeritus professor **Ky Fan** died in Santa Barbara on March 22, 2010, at age 95.

The Eckart-Young Theorem (1936)

considers the approximation of one matrix by another matrix of lower rank

minimize
$$F(B) = ||A - B||_F^2$$

subject to $rank(B) \le k$

(Also called the Schmidt-Mirsky Theorem.)

The Frobenius matrix norm

$$A = (a_{ij})$$
 a real $m \times n$ matrix, $m \ge n$.

$$\|A\|_{F} = (\sum \sum (a_{ij})^{2})^{1/2}$$

$$||A||_{\mathbf{F}}^2 = \operatorname{trace}(A^T A) = \operatorname{trace}(AA^T)$$

=
$$(\sigma_1)^2 + (\sigma_2)^2 + \dots + (\sigma_n)^2$$
,

where

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n \geq 0 ,$$

denote the singular values of A.

The Singular Value Decomposition

$$A = U \Sigma V^{T}$$

$$\Sigma = \text{diag } \{\sigma_{1}, \sigma_{2}, \dots, \sigma_{p}\} , \quad p = \text{min } \{m, n\}$$

$$U = [\mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{p}] , \quad U^{T}U = I$$

$$V = [\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{p}] , \quad V^{T}V = I$$

$$AV = U\Sigma \qquad A^{T}U = V\Sigma$$

$$A\mathbf{v}_{j} = \sigma_{j} \mathbf{u}_{j} , \quad A^{T} \mathbf{u}_{j} = \sigma_{j} \mathbf{v}_{j} \quad j = 1, \dots, p.$$

Rank-k truncated SVD

$$T_k(A) = U_k D_k V_k^T$$

$$D_k = \text{diag} \{\sigma_1, \sigma_2, \dots, \sigma_k\}$$
,

$$U_k = [u_1, u_2, ..., u_k]$$
, $U_k^T U_k = I$

$$V_k = [v_1, v_2, ..., v_k]$$
, $V_k^T V_k = I$

The matrix $T_k(A)$ is called a rank-k truncated SVD of A.

The Eckart-Young Theorem (1936)

says that the "truncated SVD" matrix

$$T_k(A) = U_k D_k V_k^T$$

solves the least norm problem

minimize
$$F(B) = ||A - B||_F^2$$

subject to $rank(B) \le k$

(Also called the Schmidt-Mirsky Theorem.)

Unitarily Invariant matrix norms

 $A = (a_{ij})$ a real $m \times n$ matrix,

X a real mxm unitary matrix, $X^TX = I$.

Y a real $n \times n$ unitary matrix, $Y^TY = I$.

$$||A|| = ||X^TA|| = ||AY|| = ||X^TAY||$$

Unitarily Invariant matrix norms

$$\begin{split} \|A\|_F &= \left((\sigma_1)^2 + (\sigma_2)^2 + \ldots + (\sigma_n)^2 \right)^{1/2} \quad \text{Frobenius} \\ \|A\| &= \left((\sigma_1)^p + (\sigma_2)^p + \ldots + (\sigma_n)^p \right)^{1/2} \quad \text{Schatten p-norm} \\ &\qquad \qquad 1 \leq p < \infty \\ \|A\| &= \sigma_1 + \sigma_2 + \ldots + \sigma_k \quad \text{Ky Fan k-norm , k = 1, ..., n} \\ \|A\|_{tr} &= \sigma_1 + \sigma_2 + \ldots + \sigma_n \quad \text{the trace norm.} \\ \|A\|_2 &= \sigma_1 = \max \left\{ \sigma_j \right\} \quad \text{the 2-norm.} \end{split}$$

Mirsky Theorem (1960)

says that the "truncated SVD" matrix

$$T_k(A) = U_k D_k V_k^T$$

solves the least norm problem

minimize
$$F(B) = ||A - B||$$

subject to $rank(B) \le k$,

for any unitarily invariant matrix norm.

Rank-k Matrices

$$B = X_k R Y_k^T$$

where

R is a kxk matrix

$$X_k = [x_1, x_2, ..., x_k], X_k^T X_k = I$$

$$Y_k = [y_1, y_2, ..., y_k], Y_k^T Y_k = I$$

The Eckart-Young Problem

can be rewritten as

minimize
$$F(B) = ||A - X_k R Y_k^T||_F^2$$

subject to $X_k^T X_k = I$ and $Y_k^T Y_k = I$,

where $B = X_k R Y_k^T$ and R is a kxk matrix.

Theorem: Let X_k and Y_k be a pair of orthogonal matrices as obove, then the related

"Orthogonal Quotients Matrix"

$$X_k^T A Y_k = (x_i^T A y_j)$$

solves the problem

minimize
$$F(R) = ||A - X_k R Y_k^T||_F$$

Notation:

 X_k - denotes the set of all real $m \times k$ orthogonal matrices X_k ,

$$X_k = [x_1, x_2, ..., x_k], X_k^T X_k = I$$

 \mathbf{Y}_{k} - denotes the set of all real $\mathbf{n} \times \mathbf{k}$ orthogonal matrices \mathbf{Y}_{k} ,

$$Y_k = [y_1, y_2, ..., y_k], Y_k^T Y_k = I$$

Corollary 1: The Eckart–Young Problem can be rewritten as

minimize
$$F(X_k, Y_k) = ||A - X_k R_k Y_k^T||_F^2$$

subject to $X_k \in \mathbf{X}_k$ and $Y_k \in \mathbf{Y}_k$,

where R_k is the related Orthogonal Quotients Matrix

$$\mathbf{R}_{\mathbf{k}} = \mathbf{X}_{\mathbf{k}}^{\mathsf{T}} \mathbf{A} \mathbf{Y}_{\mathbf{k}} .$$

The Orthogonal Quotients Equality

For any pair of orthogonal matrices,

$$X_k \in \mathbf{X}_k$$
 and $Y_k \in \mathbf{Y}_k$,

$$||A - X_k R_k Y_k^T||_F^2 = ||A||_F^2 - ||R_k||_F^2$$

where R_k is the related orthogonal quotients matrix

$$R_k = X_k^T A Y_k .$$

Corollary 2: The Eckart-Young Problem

minimize
$$F(X_k, Y_k) = ||A - X_k R_k Y_k^T||_F^2$$

subject to $X_k \in \mathbf{X}_k$ and $Y_k \in \mathbf{Y}_k$.

is equivalent to

maximize
$$\|X_k^T A Y_k\|_F^2$$

subject to $X_k \in \mathbf{X}_k$ and $Y_k \in \mathbf{Y}_k$.

The SVD matrices U_k and V_k solves both problems, giving the optimal values of $\sigma_{k+1}{}^2 + \dots + \sigma_n{}^2$ and $\sigma_1{}^2 + \sigma_2{}^2 + \dots + \sigma_k{}^2$, respectively.

Returning to symmetric matrices

Can we extend the

Orthogonal Quotients Equality

to Ky Fan extremum problems?

The Spectral Decomposition

 $S = (S_{ii})$ a symmetric positive semi-definite $n \times n$ matrix

With eigenvalues
$$\begin{array}{l} \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n \geq 0 \\ \\ \text{and eigenvectors} \quad \mathbf{V_1} \,, \, \mathbf{V_2} \,, \, \dots \,, \, \mathbf{V_n} \\ \\ S \, \mathbf{v_j} = \, \lambda_j \, \mathbf{v_j} \,, \, \, \mathbf{j} = 1, \dots, n \,\,. \quad S \, \mathbf{V} = \mathbf{V} \, \mathbf{D} \\ \\ V = \left[\mathbf{v_1} \,, \, \mathbf{v_2} \,, \dots \,, \, \mathbf{v_n} \right] \,\,, \quad V^T \mathbf{V} = \mathbf{V} \, \mathbf{V}^T = \mathbf{I} \\ \\ D = diag \, \left\{ \, \lambda_1 \,, \, \lambda_2 \,\,, \, \dots \,, \, \lambda_n \, \right\} \\ \\ S = \mathbf{V} \, \mathbf{D} \, \mathbf{V}^T = \boldsymbol{\Sigma} \, \lambda_j \, \mathbf{v_j} \, \mathbf{v_j}^T \\ \end{array}$$

Ky Fan's Maximum Principle

S a symmetric positive semi-definite n x n matrix

 \mathbf{Y}_{k} the set of orthogonal n x k matrices

$$\lambda_1 + \dots + \lambda_k = \max \{ \operatorname{trace}(Y_k^T S Y_k) | Y_k \in Y_k \}$$

Solution is obtained for the Spectral matrix

$$V_k = [v_1, v_2, \dots, v_k]$$
.

which is related to the largest k eigenvalues.

Ky Fan's Minimum Principle

S a symmetric n x n matrix.

 \mathbf{Y}_k the set of orthogonal n x k matrices.

$$\lambda_{n-k+1} + \dots + \lambda_n = \min \{ trace(Y_k^T S Y_k) | Y_k \in Y_k \}$$

Solution is obtained for the Spectral matrix

$$V_{k} = [v_{n-k+1}, \dots, v_{n}],$$

which is related to the smallest k eigenvalues.

The Symmetric Quotients Equality

Given

S a symmetric nxn matrix

Y_k an orthogonal nxk matrix

 $S_k = Y_k^T S Y_k$ the related "Rayleigh quotient matrix" Then

where $\operatorname{trace}(S_k) = \operatorname{trace}(Y_k^T S Y_k) = \sum y_j^T S y_j$.

Corollary 1: Ky Fan's maximum problem

maximize trace
$$(Y_k S Y_k^T)$$

subject to $Y_k \in \mathbf{Y}_k$,

is equivalent to

minimize trace
$$(S - Y_k S_k Y_k^T)$$

subject to $Y_k \in \mathbf{Y}_k$.

The Spectral matrix V_k = [v_1, v_2, \ldots, v_k] solves both problems, giving the optimal values of $\lambda_1 + \ldots + \lambda_k$ and $\lambda_{k+1} + \ldots + \lambda_n$, respectively.

Compare with the Eckart-Young Problems

minimize
$$F(X_k, Y_k) = ||A - X_k R_k Y_k^T||_F^2$$

subject to $X_k \in \mathbf{X}_k$ and $Y_k \in \mathbf{Y}_k$.

is equivalent to

maximize
$$\|X_k^T A Y_k\|_F^2$$

subject to $X_k \in \mathbf{X}_k$ and $Y_k \in \mathbf{Y}_k$.

The SVD matrices U_k and V_k solves both problems, giving the optimal values of $\sigma_{k+1}{}^2 + \dots + \sigma_n{}^2$ and $\sigma_1{}^2 + \sigma_2{}^2 + \dots + \sigma_k{}^2$, respectively.

The Eckart-Young Theorem and Ky Fan's maximum principle are "two sides of the same coin".

Is there an extended maximum principle (for rectangular matrices) from which one can derives both results?

Corollary 2: Ky Fan's minimum problem

minimize
$$trace(Y_kSY_k^T)$$

subject to $Y_k \in \mathbf{Y}_k$,

is equivalent to

maximize trace(
$$S-Y_k^TS_kY_k$$
)
subject to $Y_k \in \mathbf{Y}_k$.

The matrix $V_k = [v_{n-k+1}, \dots, v_n]$ solves both problems, giving the optimal value of $\lambda_{n-k+1} + \dots + \lambda_n$ and $\lambda_1 + \dots + \lambda_{n-k}$, respectively.

Can we extend Ky Fan's principles

from eigenvalues of symmetric matrices

to singular values of rectangular matrices?

Notation: $1 \le m^* \le m$, $1 \le n^* \le n$,

 X_{m*} - denotes the set of all real $m \times m*$ orthogonal matrices X_{m*} ,

$$X_{m^*} = [x_1, x_2, ..., x_{m^*}], X_{m^*}^T X_{m^*} = I$$

 Y_{n*} - denotes the set of all real $n \times n^*$ orthogonal matrices Y_{n*} ,

$$Y_{n*} = [y_1, y_2, ..., y_{n*}], Y_{n*}^T Y_* = I$$

Reminder:

Given
$$X_{m^*} \in X_{m^*}$$
 and $Y_{n^*} \in Y_{m^*}$,

the m*x n* matrix

$$(\mathbf{X}_{m^*})^{\mathrm{T}}\mathbf{A}\mathbf{Y}_{n^*} = (\mathbf{x}_i^{\mathrm{T}}\mathbf{A}\mathbf{y}_j)$$

is called "Orthogonal Quotients Matrix".

Notations:

The singular values of the

Orthogonal Quotients Matrix

$$(X_{m^*})^T A Y_{n^*} = (x_i^T A y_j)$$

are denoted as

$$\eta_1 \geq \eta_2 \geq \dots \geq \eta_k \geq 0 ,$$

where

$$k = \min \{ m^*, n^* \} .$$

Question:

Which choice of orthogonal matrices

$$X_{m^*} \in X_{m^*}$$
 and $Y_{n^*} \in Y_{m^*}$,

maximizes (or minimizes) the sum

$$(\eta_1)^p + (\eta_2)^p + \dots + (\eta_k)^p$$

where p > 0 is a given positive constant.

(Maximizing (or minimizing) the "Schatten p-norm" of $(X_{m^*})^T A Y_{n^*}$)

An Extended Maximum Principle:

The SVD matrices

$$U_{m^*} = [\mathbf{u_1}\,,\mathbf{u_2}\,,\,\dots\,,\mathbf{u_{m^*}}] \quad \text{and} \quad V_{n^*} = [\mathbf{v_1}\,,\mathbf{v_2}\,,\,\dots\,,\mathbf{v_{n^*}}]$$
 solve the problem

maximize
$$F(X_{m^*}, Y_{n^*}) = (\eta_1)^p + (\eta_2)^p + \dots + (\eta_k)^p$$

subject to $X_{m^*} \in \mathbf{X_{m^*}}$ and $Y_{n^*} \in \mathbf{Y_{n^*}}$,

for any positive power p > 0, giving the optimal value of $(\sigma_1)^p + (\sigma_2)^p + ... + (\sigma_k)^p$.

An Extended Maximum Principle:

The SVD matrices

$$U_{m^*} = [u_1, u_2, \dots, u_{m^*}]$$
 and $V_{n^*} = [v_1, v_2, \dots, v_{n^*}]$

solve the problem

maximize
$$F(X_{m^*}, Y_{n^*}) = ||(X_{m^*})^T A Y_{n^*}||$$

subject to
$$X_{m^*} \in \mathbf{X_{m^*}}$$
 and $Y_{n^*} \in \mathbf{Y_{n^*}}$,

for any unitarily invariant matrix norm.

The proof

and

is based on "rectangular" versions of

Cauchy Interlace Theorem,

Poincare Separation Theorem.

The validity for Unitarily Invariant matrix norms follows from

Ky Fan Dominance Theorem.

Example 1: When p=1 the SVD matrices

$$U_{m^*} = [u_1, u_2, \dots, u_{m^*}]$$
 and $V_{n^*} = [v_1, v_2, \dots, v_{n^*}]$

solve the "Rectangular Ky Fan problem"

maximize
$$F(X_{m^*}, Y_{n^*}) = \eta_1 + \eta_2 + ... + \eta_k$$

subject to $X_{m^*} \in \mathbf{X_{m^*}}$ and $Y_{n^*} \in \mathbf{Y_{n^*}}$,

giving the optimal value of

$$\sigma_1 + \sigma_2 + \dots + \sigma_k$$
.

Example 2: When p=2 the SVD matrices

$$U_{m^*} = [u_1, u_2, \dots, u_{m^*}]$$
 and $V_{n^*} = [v_1, v_2, \dots, v_{n^*}]$

solve the "rectangular Eckart-Young problem"

maximize
$$F(X_{m^*}, Y_{n^*}) = ||(X_{m^*})^T A Y_{n^*}||_F^2$$

subject to
$$X_{m^*} \in X_{m^*}$$
 and $Y_{n^*} \in Y_{n^*}$,

giving the optimal value of

$$(\sigma_1)^2 + (\sigma_2)^2 + \dots + (\sigma_k)^2$$
.

An Extended Minimum Principle

Question: Can we prove a similar minimum principle?

Answer: Yes, but building the solution matrices is more subtle.

The main difficulty here is to characterize cases in which the optimal value differs from zero.

An Extended Minimum Principle:

Here we consider the problem

minimize
$$F(X_{m^*}, Y_{n^*}) = (\eta_1)^p + (\eta_2)^p + ... + (\eta_k)^p$$

subject to
$$X_{m^*} \in X_{m^*}$$
 and $Y_{n^*} \in Y_{n^*}$,

for any positive power p > 0.

The solution matrices are obtained by deleting some columns from the SVD matrices

$$U = [u_1, u_2, ..., u_m]$$
 and $V = [v_1, v_2, ..., v_n]$.

An Extended Minimum Principle:

Here we consider the problem

minimize
$$F(X_{m^*}, Y_{n^*}) = ||(X_{m^*})^T A Y_{n^*}||$$

subject to
$$X_{m^*} \in X_{m^*}$$
 and $Y_{n^*} \in Y_{n^*}$,

for any unitarily invariant matrix norm.

The solution matrices are obtained by deleting some columns from the SVD matrices

$$U = [u_1, u_2, ..., u_m]$$
 and $V = [v_1, v_2, ..., v_n]$.

Summary †

- * Orthogonal Quotients Matrices.
- * The Eckart-Young Theorem.
- * The Orthogonal Quotients Equality.
- * Ky Fan's extremum principles.
- * Extended Extremum Principles.
- † A. Dax, "On extremum properties of orthogonal quotients matrices", Lin. Alg. and its Applic., 432(2010), pp. 1234 – 1257.

The END

Thank You

Example 1*: When p=1 and m*=n*=k the SVD matrices

$$U_k = [u_1, u_2, \dots, u_k]$$
 and $V_k = [v_1, v_2, \dots, v_k]$

solve the maximum trace problem

maximize
$$F(X_k, Y_k) = \text{trace} ((X_k)^T A Y_k)$$

subject to $X_k \in X_k$ and $Y_k \in Y_k$,

giving the optimal value of

$$\sigma_1 + \sigma_2 + \dots + \sigma_k$$
.

* See also Horn & Johnson, "Topics in Matrix Analysis", p. 195.