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I am not giving a survey

on applications of matrices in computer science, or

on applications of graphs in computer science

the subject of the talk :

Applications of the theory of graph spectra (or of spectral graph

theory) in computer science

Spectral graph theory is a mathematical theory where linear

algebra and graph theory meet together



A spectral graph theory is a theory in which graphs are studied

by means of eigenvalues of a matrix M which is in a prescribed

way defined for any graph.

This theory is called M–theory.

Frequently used graph matrices:

A adjacency matrix

D diagonal matrix of vertex degrees

L = D − A Laplacian

Q = D + A signless Laplacian

The spectral graph theory is the union of all these particular

theories + interactions



For example, the adjacency matrix of the graph shown in Fig. 1

b b b b
x1 x2 x3 x4

Fig.1

is given by A =

0 1 0 0

1 0 1 0 .
0 1 0 1

0 0 1 0
For the graph G on Fig.1 we have

PG(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 0

−1 λ −1 0

0 −1 λ −1

0 0 −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= λ4 − 3λ2 + 1 .

Eigenvalues of G are 1.6180, 0.6180, − 0.6180, − 1.6180 or
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Adjacency matrix - characteristic features

A walk of length k in a graph (or digraph) is a sequence of (not

necessarily different) vertices x1, x2, . . . , xk, xk+1 such that for each

i = 1, 2, . . . , k there is an edge (or arc) from xi to xi+1. The walk

is closed if xk+1 = x1.

Counting walks in a graph (or digraph) is related to graph spec-

tra by the following well-known result.

Theorem. If A is the adjacency matrix of a graph, then the

(i, j)-entry a
(k)
ij of the matrix Ak is equal to the number of walks

of length k that originate at vertex i and terminate at vertex j.

Thus, for example, the number of closed walks of length k is

equal to the k-th spectral moment, since
∑n

i=1 a
(k)
ii = tr(Ak) =

∑n
i=1 λk

i .



Laplacian matrix - characteristic features

Let G be a connected graph on n vertices. Eigenvalues in non-

decreasing order and corresponding orthonormal eigenvectors of

the Laplacian L = D − A of G are denoted by ν1 = 0, ν2, . . . , νn

and u1, u2, . . . , un, respectively.

Note that if xT = (x1, x2, . . . , xn), then

xTLx =
∑

i∼j, i<j
(xi − xj)

2.

We also have

ν =
∑

i∼j, i<j
(xi − xj)

2

if x is a normalized eigenvector belonging to eigenvalue ν of L.



Biggs N.L., Algebraic Graph Theory, Cambridge University

Press, Cambridge, 1993.

Chung F., Spectral Graph Theory, American Mathematical So-

ciety, Providence, Rhode Island, 1997.

Cvetković D., Doob M., Sachs H., Spectra of Graphs, Theory

and Application, 3rd edition, Johann Ambrosius Barth Verlag,

Heidelberg–Leipzig, 1995.

Cvetković D., Rowlinson P., Simić S. K., An Introduction to

the Theory of Graph Spectra, Cambridge University Press, Cam-

bridge, 2009.



Typical research subjects in mathematical theory:

– characterizations of graphs by their spectra,

– inequalities for eigenvalues,

– extremal problems with eigenvalues,

– graph energy (the sum of the absolute values of eigenvalues).



1 A survey of applications

1.1 Expanders and combinatorial optimization

1.2 Complex networks

1.3 Data mining

1.4 Computer vision and pattern recognition

1.5 Internet search

1.6 Load balancing and multiprocessor interconnection networks

1.7 Anti-virus protection versus spread of knowledge

1.8 Statistical databases and social networks

1.9 Quantum computing



Expanders and combinatorial optimization

One of the oldest applications (from 1970’s) of graph eigenvalues

in Computer Science is related to graphs called expanders.

A graph has good expanding properties if each subset of the

vertex set of small cardinality has a set of neighbors of large car-

dinality.

Expanders and some related graphs (called enlargers, magni-

fiers, concentrators and superconcentrators) appear in treatment

of several problems in Computer Science (for example, communi-

cation networks, error-correcting codes, optimizing memory space,

computing functions, sorting algorithms, etc.).

Expanders can be constructed from graphs with a small second

largest eigenvalue in modulus. Such class of graphs includes the so

called Ramanujan graphs.



Expanders are related to some problems of combinatorial op-

timization. More generally, several algorithms of combinatorial

optimization are considered as part of computer science.

Numerous relations between eigenvalues of graphs and combi-

natorial optimization have been known for last twenty years. The

section titles of an excellent expository article

Mohar B., Poljak S., Eigenvalues in combinatorial optimiza-

tion, in: Combinatorial and Graph-Theoretical Problems in

Linear Algebra, (ed. R. Brualdi, S. Friedland, V. Klee), Springer-

Verlag, New York, 1993, 107–151.

show that many problems in combinatorial optimization can be

treated using eigenvalues:



1. Introduction, 1.1. Matrices and eigenvalues of graphs;

2. Partition problems; 2.1 Graph bisection, 2.2. Connectivity

and separation, 2.3. Isoperimetric numbers, 2.4. The maximum

cut problem, 2.5. Clustering, 2.6. Graph partition;

3. Ordering, 3.1. Bandwidth and min-p-sum problems, 3.2.

Cut-width, 3.3 Ranking, 3.4. Scaling, 3.5. The quadratic assign-

ment problem;

4. Stable sets and coloring, 4.1. Chromatic number, 4.2. Lower

bounds on stable sets, 4.3. Upper bounds on stable sets, 4.4. k-

colorable subgraphs;

5. Routing problems, 5.1. Diameter and the mean distance, 5.2.

Routing, 5.3. Random walks;

6. Embedding problems;



Note that one of early heuristics for graph bisection uses the

Fiedler vector, ie. the eigenvector belonging to the second small-

est eigenvalue of the graph Laplacian. This eigenvalue is called

algebraic connectivity of the graph and was introduced by M.

Fiedler in the paper

Algebraic connectivity of graphs, Czech. J. Math., 23(98)(1973),

298-305.



The algebraic connectivity has been used in

D. Cvetković, M. Čangalović and V. Kovačević-Vujčić, Semidef-

inite programming methods for the symmetric traveling salesman

problem, Integer Programming and Combinatorial Optimiza-

tion, Proc. 7th Internat. IPCO Conf., Graz, Austria, June

1999, Lecture Notes Comp. Sci. 1610, Springer, Berlin, 1999,

126-136.

to formulate the following discrete semidefinite programming

model of the symmetric travelling salesman problem (STSP):



STSP:

minimize F (X) =
∑n

i=1
∑n

j=1

(
−1

2dij

)
xij + α

2

∑n
i=1

∑n
j=1 dij

subject to

xii = 2 + α− β (i = 1, . . . , n),
∑n

j=1 xij = nα− β, (i = 1, . . . , n),

xij ∈ {α− 1, α} (j = 1, . . . , n : i < j), X ≥ 0

Here X ≥ 0 means that the matrix X is symmetric and positive
semidefinite, while α and β are chosen so that α > hn/n and 0 <
β ≤ hn with hn = 2−2 cos(2π/n) being the algebraic connectivity
of the cycle Cn.



Complex networks

Complex networks is a common name for various real networks

which are presented by graphs with an enormously great number

of vertices. Here belong Internet graphs, phone graphs, e-mail

graphs, social networks and many other. In spite of their diversity

such networks show some common properties.

Several models of random graphs have been used to describe

complex networks including the classical Erdös-Rényi model where

we have a constant probability for the existence of each edge. There

are models where given degree distribution is realized.



Main characteristic of complex networks is the degree and eigen-

value distribution. Both distributions obey a power low of the form

x−β for a positive β.

In particular, if nk denotes the number of vertices of degree k,

then asymptotically nk = ak−β for some constant a.



It was conjectured in

Faloutsos M., Faloutsos P., Faloutsos C., On power-low rela-

tionships of the Internet topology, Proc. ACM SIGCOMM ’99,

ACM Press, New York, 1999, 251-262.

that in networks with degree power law the largest eigenvalues of

the adjacency matrix have also a power law distribution. That was

proved under some conditions in

Mihail M. Papadimitrou C.H., On the eigenvalue power-low,

RANDOM 2002, LNCS 2483, Springer, Berlin, 2002, 254-262.

The power law for eigenvalues can be formulated in the following

way. Let λ1, λ2, . . . be non-increasing sequence of eigenvalues of

the adjacency matrix, then asymptotically λi = ai−γ for some

constant a and positive γ.



The following book is devoted to complex networks.

Chung F., Lu L., Complex Graphs and Networks, American

Mathematical Society, Providence, Rhode Island, 2006.

There are two chapters which describe spectral properties of such

networks.

Note that most of the papers on complex networks appear in

scientific journals in the area of Physics.



Empirical studies of the Internet topology have been conducted

in many papers using the normalized Laplacian matrix

L̂ = D−1
2(D − A)D−1

2 = D−1
2LD−1

2 .

This matrix has 1’s on the diagonal, and at an off-diagonal po-

sition (i, j) the entry is equal to 0 for non-adjacent and − 1√
didj

for

adjacent vertices i, j of degrees di, dj. The spectrum of L̂ belongs

to the interval [0, 2] independently of the number of vertices. The

book

Chung F., Spectral Graph Theory, American Mathematical So-

ciety, Providence, Rhode Island, 1997.

is devoted to the normalized Laplacian.



The eigenvalues γi; i = 1, 2, . . . , n of L̂ in non-decreasing order

can be represented by points ( i−1
n−1, γi) in the region [0, 1] × [0, 2]

and can be approximated by a continuous curve. It was noticed in

Vukadinović D., Huang P., Erlebach T., A spectral analysis of

the Internet topology, 2001

that this curve is practically the same during the time for several

networks in spite of the increasing number of vertices and edges of

the corresponding graph. Therefore the authors consider the spec-

trum of L̂ as a fingerprint of the corresponding network topology.



Data mining

Data mining discovers interesting and unknown relationships

and patterns in huge data sets. Such hidden information could

contribute very much to many domains such as image processing,

web searching, computer security and many others including those

outside computer science.

Among many tools used in data mining, spectral techniques play

an important role

Sawilla R., A survey of data mining of graphs using spectral

graph theory, Defence R&D Canada ’ Ottawa, Technical Memo-

randum TM 2008-317, Ottawa, 2008.



Here belong, in particular, clustering and ranking the vertices of

a graph. While ranking will be treated later, here we consider the

clustering.

A description of spectral clustering methods is given in the

tutorial

Luxburg U. von, A tutorial on spectral clustering, Stat. Com-

put. 17(2007), 395-416.



We shall present an algorithm for graph clustering which is based

on the Laplacian matrix of a graph.

Let G be a connected graph on n vertices. Eigenvalues in non-

decreasing order and corresponding orthonormal eigenvectors of

the Laplacian L = D − A of G are denoted by ν1 = 0, ν2, . . . , νn

and u1, u2, . . . , un, respectively.

In order to construct k clusters in a graph we form an n × k

matrix U containing the vectors u1, u2, . . . , uk as columns. We

have a geometric representation G of G in the k-dimensional space

Rk: we just take rows of U as point coordinates representing the

vertices of G. Edges are straight line segments between the cor-

responding points. Now classical clustering methods (say k-means

algorithm) should be applied to this new graph presentation.



The following well-known inequality for the Rayleigh quotient

ν1 ≤ xTLx

xTx
≤ νn

holds for any non-zero vector x of the corresponding dimension.

Equality holds for relevant eigenvectors.

More generally, the eigenvalue νi is the minimal value of the

Rayleigh quotient of L over the orthogonal complement of the sub-

space generated by eigenvectors u1, u2, . . . , ui−1.

Note that if xT = (x1, x2, . . . , xn), then

xTLx =
∑

i∼j, i<j
(xi − xj)

2.



We also have

ν =
∑

i∼j, i<j
(xi − xj)

2

if x is a normalized eigenvector belonging to eigenvalue ν of L.

The sum of squares of lengths of all edges in the representation

G of G is equal to ν1 + ν2 + . . . + νk. This is the minimal value

over all representations obtained via matrix U with orthonormal

columns.

Such an extremal graph representation must have remarkable

properties. It enhances the cluster-properties of the original data

and clusters can now be easily detected.



In regular graphs we can use the adjacency matrix A instead

of the Laplacian L. We have L = rI − A for a regular graph of

degree r and λi = r − νi for i = 1, 2, . . . , n.

Eigenvectors of L are also eigenvectors of A for the correspond-

ing eigenvalues.

Instead of first k smallest eigenvalues we have to consider now

k largest eigenvalues.



Example. Consider the adjacency matrix A of a cycle of Cn

length n. It is well known that the eigenvalues λj of the matrix A

are given by λj = 2 cos(2πj/n) (j = 1, . . . , n).

For j = 1 and j = n − 1 we get the second largest eigenvalue

2 cos(2π/n) which corresponds to the second smallest eigenvalue

2− 2 cos(2π/n) of the Laplacian.

Two independent eigenvectors x, y are given by coordinates

xl = cos(2πl/n) (l = 1, . . . , n), yl = sin(2πl/n) (l = 1, . . . , n).

If we represent vertices by points (xi, yi), the picture of the graph

is a regular n-gon.



Graph representation obtained by the Laplacian matrix has been

used in graph drawings:

Koren Y., Drawing graphs by eigenvectors: theory and prac-

tice, Comput. Math. appl., 49(2005), 1867-1888.

Tutte W.T., How to draw a graph, Proc. London Math. Soc.,

13(1963),743-768.



Example. In our context interesting are also fullerene graphs

corresponding to carbon compounds called fullerenes. Fullerene

graphs are planar regular graphs of degree 3 having as faces only

pentagons and hexagons. The Euler theorem for planar graphs

yields that the number of pentagons is exactly 12. Although be-

ing planar, fullerene graphs are represented (and this really corre-

sponds to actual positions of carbon atoms in a fullerene) in 3-space

with its vertices embedded in a quasi-spherical surface.



A typical fullerene is C60. It can be described also as a truncated

icosahedron and has the shape of a football.

Figure 1: a) Planar and b) 3D visualization of the icosahedral fullerene C60



Fullerene graphs have a nice 3D-representation in which the co-

ordinates of the positions of vertices can be calculated from three

eigenvectors of the adjacency matrix (the so called topological co-

ordinates which were also used in producing the atlas

P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes,

Clarendon Press, Oxford, 1995.).



Together with the Laplacian L and the normalized Laplacian

L̂ also the matrix D−1L has been used in clustering algorithms.

According to

Luxburg U. von, A tutorial on spectral clustering, Stat. Com-

put. 17(2007), 395-416.

the last matrix performs best.



Computer vision and pattern recognition

Spectral graph theory has been widely applied in computer vi-

sion and pattern recognition. Examples include image segmen-

tation, routing, image classification, etc. These methods use the

spectrum, i.e. eigenvalues and eigenvectors, of the adjacency or

Laplacian matrix of a graph.

The basic idea is to represent an image by a weighted graph with

a vertex for each pixel and the edges between the neighbouring

pixels with weight depending on how similar the pixels are.

A more sophisticated idea is to represent an image’s content by

a graph with specially selected points as vertices. The interesting

points are points in an image which have a well-defined position

and can be robustly detected.

Several other graphs are used.



Shi J., Malik J., Normalized cuts and image segmentation, Proc.

IEEE Conf. Computer Vision and Pattern Recognition, 1997, 731-

737; IEEE Trans. Pattern Analysis Machine Intell., 28(2000), 888-

905.

It is shown how the Fiedler vector (i.e. the eigenvector associated

to the second smallest eigenvalue of the Laplacian matrix) can be

used to separate the foreground from the background structure in

images. The original procedure has been improved by using the

normalized Laplacian matrix (so as to maximize the normalized

graph cut).



More generally, image segmentation is an important procedure

in computer vision and pattern recognition. The problem is to

divide the image into regions according to some criteria. Very

frequently the image segmentation is obtained using eigenvectors

of some graph matrices.



Internet search

Web search engines are based on eigenvectors of the adjacency

and some related graph matrices:

PageRank (used in Google)

Brin S., Page L., The Anatomy of Large-Scale Hypertextual

Web Search Engine, Proc. 7th International WWW Conference,

1998.

and Hyperlinked Induced Topics Search (HITS)

Kleinberg J., Authoratitive sources in a hyperlinked environ-

ment, J. ACM, 48 (1999), 604-632.



Internet is represented by a digraph G, web pages – vertices,

links – arcs.

HITS exploits eigenvectors belonging to the largest eigenvalues

of the matrices AAT and ATA where A is the adjacency matrix

of a subgraph of G induced by the set of web pages obtained from

search key words by some heuristics. Eigenvectors define ordering

of selected web pages.



PageRank uses random walks. Adjacency matrix of G is normal-

ized so that the sum of entries in each row is equal to 1. This matrix

P is the transition matrix of a Markov chain and the normalized

eigenvector of the largest eigenvalue of P T defines the equilibrium

state of the chain. Pages are ranked by the coordinates of this

eigenvector.

Expository paper

Langville A.N., Meyer C.D., A survey of eigenvector methods

for Web information retrieval, SIAM Rev., 47(2005), No. 1,

135-161.

contains a survey of both techniques.



From the mathematical point of view, the subject of ranking

individuals or objects by eigenvectors of suitably chosen graph ma-

trices is very old. One of the basic references is the thesis

Wei T.H., The algebraic foundations of ranking theory, Thesis,

Cambridge, 1952.

In particular, the ranking of the participants of a round-robin

tournament can be carried out in that way (see, for example, Spec-

tra of Graphs, Theory and Application, , p. 226).

These methods have been used in the sociology for a long time

as well; see, for example,

Bonacich P. Power and centrality: A family of measures, Amer.

J. Soc., 92(1987), 1170-1182.



We reproduce here a relevant result. The following theorem of

T.H. Wei (1952) is noted in Eigenspaces of Graphs, p. 26:

Theorem. Let Nk(i) be the number of walks of length k start-

ing at vertex i of a non-bipartite connected graph G with ver-

tices 1, 2, . . . , n. Let

sk(i) =
Nk(i)

∑n
j=1 Nk(j)

.

Then, for k →∞, the vector (sk(1), sk(2), . . . , sk(n))T tends

towards the eigenvector corresponding to the index of G.



Load balancing and multiprocessor interconnection

networks

The job which has to be executed by a multiprocessor system

is divided into parts (elementary jobs or items) that are given to

particular processors. Elementary jobs distribution among pro-

cessors can be represented by a vector x whose coordinates are

non-negative integers associated to graph vertices and indicate how

many elementary jobs are given to corresponding processors.

The load balancing problem requires creation of algorithms for

moving elementary jobs among processors in order to achieve the

uniform distribution, i.e., that the vector x is an integer multiple

of the vector j whose all coordinates are equal to 1.



Let G be a connected graph on n vertices. Eigenvalues and cor-

responding orthonormal eigenvectors of the Laplacian L = D−A

of G are denoted by ν1, ν2, . . ., νn = 0 and u1, u2, . . . , un, re-

spectively. Any vector x from Rn can be represented as a linear

combination of the form x = α1u1 + α2u2 + · · · + αnun.

Suppose now that G has distinct Laplacian eigenvalues µ1, µ2, . . . , µm =

0 with multiplicities k1, k2, . . . , km = 1, respectively. Vector x can

now be represented in the form x = y1 + y2 + · · · + ym where yi

belongs to the eigenspace of µi for i = 1, 2, . . . , m. We also have

ym = βj for some β.



Since Lx = L(y1+y2+· · ·+ym) = µ1y1+µ2y2+· · ·+µmym, we

have x(1) = x− 1
µ1

Lx = (I− 1
µ1

L)x = (1− µ2
µ1

)y2+ · · ·+βj. We see

that the component of x in the eigenspace of µ1 has been cancelled

by the transformation by the matrix I− 1
µ1

L while the component

in the eigenspace of µm remains unchanged. The transformation

I − 1
µ2

L will cause that the component of x(2) = (I − 1
µ2

L)x(1) in

the eigenspace of µ2 disappears. Continuing in this way

x(k) = (I − 1

µk
L)x(k−1), k = 1, 2, . . . , m− 1 (1)

we shall obtain x(m−1) = βj.



We have seen how a vector x can be transformed to a multiple

of j using the iteration process (1) which involves the Laplacian

matrix of the multiprocessor graph G.

Let vector x(k) have coordinates x
(k)
1 , x

(k)
2 , . . . , x(k)

n . Relations

(1) can be rewritten in the form

x
(k)
i = x

(k−1)
i − 1

µk

∑

i∗j
(dix

(k−1)
i − x

(k−1)
j ) (2)

where di is the degree of vertex i. This means that the current

load at vertex i is changed in such a way that vertex (processor) i

sends 1
µk

-th part of its load to each of its di neighbors and, because

this holds for every vertex, also receives 1
µk

-th part of the load from

each of its di neighbors.



We have a load flow on the edge set of G. If x
(k−1)
i is negative,

then vertex i, in fact, receives the corresponding amount. For each

edge ij we have two parts of the flow: the part which is sent (or

received) by i and the part which is sent (or received) by j. Adding

algebraically we get final value of the flow through edge ij. This

flow at the end has a non-negative value which is sent either from

i to j or vice versa.



The number of iterations in (1) is equal to the number m of

non-zero distinct Laplacian eigenvalues of the underlying graph.

The maximum vertex degree ∆ of G also affects computation of

the balancing flow. The complexity of the balancing flow calcula-

tions essentially depends on the product m∆ and that is why this

quantity was proposed in

R. Elsässer, R. Královič, B. Monien, Sparse topologies with

small spectrum size, Theor. Comput. Sci. 307:549–565, 2003.

as a parameter relevant for the choice and the design of multipro-

cessor interconnection networks.



The following definitions of four kinds of graph tightness have

been introduced and used in Cvetković D., Davidović D., 2008,

2009.

First type mixed tightness t1(G) of a graph G is defined as the

product of the number of distinct eigenvalues m and the maximum

vertex degree ∆ of G, i.e., t1(G) = m∆.

Structural tightness stt(G) is the product (D + 1)∆ where D

is diameter and ∆ is the maximum vertex degree of a graph G.

Spectral tightness spt(G) is the product of the number of dis-

tinct eigenvalues m and the largest eigenvalue λ1 of a graph G.

Second type mixed tightness t2(G) is defined as a function of

the diameter D of G and the largest eigenvalue λ1, i.e., t2(G) =

(D + 1)λ1.



Several arguments were given which support the claim that

graphs with small tightness t2 are well suited for multiprocessor

interconnection networks.

It was proved that the number of connected graphs with a

bounded tightness is finite and graphs with tightness values not

exceeding 9 are determined explicitly. There are 69 such graphs

and they contain up to 10 vertices. In addition, graphs with mini-

mal tightness values when the number of vertices is n = 2, . . . , 10

are identified.



Anti-virus protection versus spread of knowledge

The largest eigenvalue λ1 plays an important role in modelling

virus propagation in computer networks. The smaller the largest

eigenvalue, the larger the robustness of a network against the

spread of viruses. In fact, it was shown in

Wang Y., Chakrabarti D., Wang C., Faloutsos C., Epidemic

spreading in real networks: An eigenvalue viewpoint, 22nd Symp.

Reliable Distributed Computing, Florence, Italy, Oct. 6–8, 2003.

that the epidemic threshold in spreading viruses is proportional to

1/λ1. Another model of virus propagation in computer networks

has been developed in

Van Mieghem P., Omić J., Kooij R., Virus spread in networks,

with the same conclusion concerning 1/λ1.



Research and development networks (R&D networks) are stud-

ied using the largest eigenvalue of the adjacency matrix in

König, M. D., Battiston S., Napoletano M., Schweityer F., The

efficiency and evolution of R&D networks, Working Paper 08/95,

Economics Working Paper Series, Eidgenössische Technische Hochschule

Zürich, Zr̈ich, 2008.

König, M. D., Battiston S., Napoletano M., Schweityer F., On

algebraic graph theory and the dynamics of innovation net-

works, Networks and Heterogenous Media, 3 (2008), No. 2, 201–

219.

In such networks it is desirable that the knowledge is spread

through network as much as possible. Therefore the tendency is

to achieve high values of the largest eigenvalue, just opposite to

considerations of virus propagation.



An intuitive explanation of both phenomena, advantage to have

minimal index for virus protection and maximal index for knowl-

edge spread, can be obtained by the fact that the number of walks

of length k in a connected graph behaves asymptotically as cλk
1

for a constant c > 0. The greater the number of walks the more

intensive is the spread of the mowing substance, does not matter

whether this is the virus or the knowledge.



The virus propagation model of Wang Y. et al. is a discrete time

model. It uses the vector Pt = (p1,t, p2,t, . . . , pn,t)
T where pi,t is

the probability that the vertex i is infected at time t. The basic

relation is

pi,t = (1− δ)pi,t−1 + β
∑

i∼j
pj,t−1,

where β is the virus birth rate on an edge connected to an infected

vertex and δ the virus curing rate on an infected vertex. The

corresponding matrix relation is

Pt = ((1− δ)I + βA)Pt−1,

where A is the adjacency matrix of the graph representing the

network.



Further we have Pt = StP0 for t = 0, 1, 2, . . . where S =

(1− δ)I + βA. We see that the the vector Pt will tend to a zero-

vector for t →∞ if and only if all eigenvalues of the matrix S are

smaller than 1 in modulus. This would mean that virus epidemic

has died and will happen if 1− δ + βλ1 < 1, i.e.

β

δ
<

1

λ1
.

Given β and δ, we see that the network is as safer as the smaller

is λ1. We can denote the quantity τ = 1
λ1

as the epidemic threshold

in spreading viruses. Hence if β
δ < τ the network is safe and in the

opposite case the network will be conquered by viruses.



There are numerous mathematical investigations in both direc-

tions: to find graphs in particular classes of graphs which have

minimal or maximal largest eigenvalue. We mention a few results

and references.

We need the following definition.

Definition. A graph G with the edge set EG is called a nested

split graph if its vertices can be ordered so that jq ∈ EG implies

ip ∈ EG whenever i ≤ j and p ≤ q.



This definition is used in

Cvetković D., Rowlinson P., Simić S. K., Eigenspaces of Graphs,

Cambridge University Press, Cambridge, 1997,

where the graphs in question were called graphs with a stepwise

adjacency matrix. Some other definitions and terms are used in

the literature, e.g. degree maximal graphs, threshold graphs. Note

that graphs with a stepwise adjacency matrix are exactly the nested

split graphs. We also have

Proposition. A graph is a nested split graph if and only if

it does not contain as an induced subgraph any of the graphs

P4, 2K2, C4.

It is well-known that in connected graphs with the given numbers

of vertices and edges the graph with maximal largest eigenvalue is

a nested split graph.



There are less results concerning minimal values of the largest

eigenvalue. The paper

Simić S., On the largest eigenvalue of bicyclic graphs, Publ. Inst.

Math.(Beograd), 46(60)(1989), 1-6.

solves the problem for bicyclic graphs.

Motivated by this fact, the authors of

van Dam E. R., Kooij R. E., The minimal spectral radius of

graphs with a given diameter, Linear Alg. Appl. 423 (2007),

408–419.

determine graphs with minimal λ1 among graphs with given num-

bers of vertices and edges, and having a given diameter.



Statistical databases and social networks

Statistical databases allow only statistical access to their records.

Individual values are confidential and are not to be disclosed, either

directly or indirectly. Thus, users of a statistical database are

restricted to statistical types of queries, such as looking for the sum

of values, minimum or maximum value of some parameters, etc.

Moreover, no sequence of answered queries should enable a user

to obtain any of the confidential individual values. However, if a

user is able to reveal a confidential individual value, the database

is said to be compromised. Statistical databases that cannot be

compromised are called secure.



One can consider a restricted case where the query collection

can be described as a graph. Surprisingly, the results from

Branković L., Usability of secure statistical data bases, PhD

Thesis, Newcastle, Australia, 1998.

Branković L., Miller M., Širáň J., Graphs, (0,1)-matrices and

usability of statistical data bases, Congressus Numerantium, 120

(1996), 186–192.

show an amazing connection between compromise-free query col-

lections and graphs with least eigenvalue -2. This connection was

recognized in the paper

Branković Lj., Cvetković D., The eigenspace of the eigenvalue

-2 in generalized line graphs and a problem in security of sta-

tistical data bases, Univ. Beograd, Publ. Elektrotehn. Fak., Ser.

Mat., 14 (2003), 37–48.



The problem of protecting the privacy appears also in social

networks at the Internet (for example, FaceBook). To protect the

privacy of personal data the network is randomized by deleting

some actual edges and by adding some false edges in such a way

that global characteristics of the network are unchanged. This is

achieved using eigenvalues of the adjacency matrix (in particular,

the largest one) and of the Laplacian (algebraic connectivity) as

described in the paper

Ying X., Wu X., Randomizing social networks: a spectrum pre-

serving approach, Proc. SIAM Internat. Conf. Data Mining,

SDM2008, April 24–26, 2008, Atlanta, Georgia, USA, SIAM, 2008,

739–750.



Quantum computing

Quantum computation is a model of computation based on the

principles of quantum mechanics although the corresponding com-

puters have not yet been realized. In spite of the non-existence of

actual machines, the theory of quantum computing is very much

developed.

For a general overview on Quantum Information Technology see,

for example, special issue of the journal

NEC Research & Developments, 44(2003), No. 3.



A graph is called integral if its spectrum consists entirely of

integers.

It has been discovered recently in

Christandl M., Datta N., Ekert A., Landahl A.J., Perfect state

transfer in quantum spin networks, Phys. Rev. Lett., 92(2004),187902.

that integral graphs can play a role in the so called perfect state

transfer in quantum spin networks.

According to definition in Physics, there is perfect state transfer

between two vertices of a graph if a single excitation can travel

with fidelity one between the corresponding sites of a spin system

modelled by the graph.



Mathematically, let G be a graph with adjacency matrix A and

consider the matrix H(t) = eiAt where t is a real variable and

i2 = −1. According to

Godsil C., Periodic graphs, arXiv:0806.2704 [math.CO].

perfect state transfer occurs between vertices u and v of G if there

is a value of t such that |H(t)u,v| = 1.

This can happen in integral graphs but not always.



There are exactly 13 connected, cubic, integral graphs

Bussemaker F. C., Cvetković D., There are exactly 13 con-

nected, cubic, integral graphs, Univ. Beograd, Publ. Elektrotehn.

Fak., Ser. Mat. Fiz., No. 544 - No. 576(1976), 43-48.

Among them are, for example, the 3-cube and the Petersen

graph.

The 3-cube is the only connected cubic integral graph with per-

fect state transfer

Severini, S., The 3-dimensional cube is the only connected cubic

graph with perfect state transfer, to appear.



Comments and suggestions

After completing our survey of applications of graph spectra to

several branches in computer science, we have some observations

and comments including some new results.

Our general suggestion is that mathematicians should re-

act on the explosion of the number of papers in computer sci-

ence which use graph spectra by selecting for their own research

some subjects from or inspired by such applications.

We have a number of detailed comments.



Computer networks resistent to the spread of viruses.

We have some results on graphs with a minimal value of the

largest eigenvalue. As we know, such graphs are models of com-

puter networks resistent to the spread of viruses.

Graphs with a minimal value of the largest eigenvalue in a set

of graphs will be called minimal graphs.

Let deg(v) be the degree of the vertex v. An internal path in

some graph is a path v0, v1, . . . , vk+1 for which deg(v0), deg(vk+1) ≥
3 and deg(v1) = · · · = deg(vk) = 2 (here k ≥ 0, or k ≥ 2 whenever

vk+1 = v0).

Consider connected graphs with fixed numbers of vertices and

edges.



A minimal graph cannot contain vertices of degree 1 because

deleting a vertex of degree 1 and a simultaneous insertion of a

vertex of degree 2 in the middle of an edge on an internal path

would diminish the largest eigenvalue λ1 (by a result from

Hoffman A.J., Smith J.H., On the spectral radii of topologi-

cally equivalent graphs, Recent Advances in Graph Theory, ed.

M. Fiedler, Academia Praha, 1975, 273-281.)

As a consequence, all edges belong to internal paths. Subdivid-

ing edges in such graphs we can further diminish λ1. However, we

have λ1 ≥ ∆/
√

∆− 1, where ∆ is the maximum vertex degree

(as follows form a result from the same paper). Therefore it is

reasonable to choose ∆ as small as possible. Obviously we should

accept ∆ = 3 since graphs with ∆ < 3 are not of much interest in

this context.



Let H be a connected graph with q edges and with vertex degrees

at least 3. For each i = 1, 2, . . . , q we want to subdivide edge i by

inserting li vertices of degree 2. Suppose that Σq
i=1li = e is fixed.

In this way we obtain a graph G. An explicit relation between the

largest eigenvalue of G and quantities l1, l2, . . . , lq can be found.

A standard procedure with Lagrange’s multipliers for finding the

minimum of an implicit function leads to the conclusion that under

some reasonable additional assumptions the quantities li should be

almost equal (equal if possible). Such a subdivision of a graph is

called balanced subdivision.

Details will appear in the paper

Belardo F., Li Marzi E.M., Simić S.K., Connected graphs of

fixed order and size with minimal index, to appear.



Indeed many of the examples of minimal graphs found by com-

puter have this property.

Earlier results on the subject are special cases of this result. It

started with a conjecture that a balanced subdivision minimizes

the largest eigenvalue in a cycle with an additional edge. The

problem was solved in a generalized form. There are results for

broken wheels and for trees.

The above presented procedure enables explicit construction of

minimal tricyclic graphs. Previous result for bicyclic graphs has

been proved in a shorter way.

Our conclusion is that balanced subdivisions of cubic graphs

should be considered as good models of virus resistent computer

networks.



Signless Laplacian could be useful

We suggest to try to create models for virus propagation and

the spread of knowledge in which the adjacency matrix would be

replaced by the signless Laplacian. In such models desirable graphs

for anti-virus protection would be those with small q1 and for R&D

networks those with large q1.

We believe that there are situations in which viruses or knowl-

edge move along lazy random walks rather than along standard

random walks. This can be expected in situations when the ver-

tices when receiving something from their neighbours are likely to

respond back with some action.



Integral graphs in load balancing

As defined, a graph is called integral if its spectrum consists

entirely of integers. Each eigenvalue has integral eigenvectors and

each eigenspace has a basis consisting of such eigenvectors.

In integral graphs load balancing algorithms, which use eigen-

values and eigenvectors, can be executed in integer arithmetics as

noted in the paper

Cvetković D., Davidović T., Multiprocessor interconnection

networks with small tightness, Internat. J. Foundations Com-

puter Sci., 20(2009), No. 5, 941-963.

The further study of integral graphs in connection to multi-

processor topologies seems to be a promising subject for future

research.



Recall that 3, 15, (−2)4 is the spectrum of the Petersen graph.

An eigenvector for eigenvalue 1 and a load balancing flow



Thank you for your attention


