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Definition of a Bicircular Projection

Definition

Let X be a complex Banach space and let P : X → X be a linear
projection. A projection P is called bicircular if the mapping
P + λP is an isometry for all modulus one complex numbers λ.

Example

Every orthogonal projection on a complex Hilbert space is
bicircular.
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Symmetric and Antisymmetric Operators

Let B(H) be the algebra of all bounded linear operators on a
complex Hilbert space H. Throughout we fix an orthonormal basis
{eλ : λ ∈ Λ} of H.

Let T ∈ B(H). If S ∈ B(H) is such that

〈Teλ, eµ〉 = 〈Seµ, eλ〉 (λ, µ ∈ Λ),

then S is called the transpose of T associated to the basis
{eλ : λ ∈ Λ} and it is denoted by T t .

S(H) = {T ∈ B(H) : T t = T} symmetric operators

A(H) = {T ∈ B(H) : T t = −T} antisymmetric operators
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Bicircular Projections on Some Operator Spaces

Theorem (L.L. Stachó and B. Zalar, LAA, 2004)

(i) Let P : B(H)→ B(H) be a bicircular projection. Then P has
the form X 7→ QX or X 7→ XQ for some
Q = Q∗ = Q2 ∈ B(H).

(ii) Let P : S(H)→ S(H) be a bicircular projection. Then either
P = 0 or P = I .

(iii) Let P : A(H)→ A(H) be a bicircular projection. Then P or P
has the form X 7→ QX + XQt with Q = x ⊗ x for some unit
vector x ∈ H.

the structure of bicircular projections on an arbitrary
C*-algebra:
M. Fošner and D. Ilǐsević, Comm. Algebra, 2005.
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Hermitian Projections

Definition

A bounded linear operator T : X → X is said to be hermitian if
e iϕT is an isometry for all ϕ ∈ R.

Theorem (J. Jamison, LAA, 2007)

A linear projection on X is a bicircular projection if and only if it is
a hermitian projection.
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Definition of a Generalized Bicircular Projection

Definition

A projection P : X → X is called generalized bicircular if the
mapping P + λP is an isometry for some modulus one complex
number λ 6= 1.

These mappings were first studied by M. Fošner, D. Ilǐsević
and C.K. Li, LAA, 2007.

The term “generalized bicircular projection”(GBP) first
appeared in a paper by F. Botelho and J. Jamison, PAMS,
2008.
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GBP on Sn(C)

Let A be Sn(C) or Kn(C). A norm ‖ · ‖ on A is said to be a
unitary congruence invariant norm if

‖UXUt‖ = ‖X‖

for all unitary U ∈ Mn(C) and all X ∈ A.

Theorem (M. Fošner, D. Ilǐsević and C.K. Li, LAA, 2007)

Let ‖ · ‖ be a unitary congruence invariant norm on Sn(C), which is
not a multiple of the Frobenius norm, and let K be the isometry
group of ‖ · ‖. Suppose P : Sn(C)→ Sn(C) is a non-trivial linear
projection and λ 6= 1 a modulus one complex number. Then
P + λP ∈ K if and only if λ = −1 and there exists
Q = Q∗ = Q2 ∈ Mn(C) such that P or P has the form
X 7→ QXQt + (I − Q)X (I − Qt).
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GBP on Kn(C)

Theorem (M. Fošner, D. Ilǐsević and C.K. Li, LAA, 2007)

Let n ≥ 3 and ‖ · ‖ be a unitary congruence invariant norm on
Kn(C), which is not a multiple of the Frobenius norm. Let K be
the isometry group of ‖ · ‖. Suppose P : Kn(C)→ Kn(C) is a
non-trivial linear projection and λ 6= 1 a modulus one complex
number. Then P + λP ∈ K if and only if one of the following
holds.

(a) There exists Q = vv∗ for a unit vector v ∈ Cn such that P or
P has the form X 7→ QX + XQt .

(b) λ = −1, K = G and there exists Q = Q∗ = Q2 ∈ Mn(C) such
that P or P has the form X 7→ QXQt + (I − Q)X (I − Qt).

(c) (λ, n) = (−1, 4), ψ ∈ K, and there is U ∈ U(C4), satisfying
ψ(UtXU) = Uψ(X )U∗ for all X ∈ K4(C), such that P or P
has the form X 7→ (X + ψ(UtXU))/2 = (X + Uψ(X )U∗)/2.
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JB*-triples

A JB*-triple is a complex Banach space A together with a
continuous triple product {· · ·} : A× A× A→ A such that

(i) {xyz} is linear in x and z and conjugate linear in y ;

(ii) {xyz} = {zyx};
(iii) for any x ∈ A, the operator δ(x) : A→ A defined by

δ(x)y = {xxy} is hermitian with nonnegative spectrum;

(iv) δ(x){abc} = {δ(x)a, b, c} − {a, δ(x)b, c}+ {a, b, δ(x)c};
(v) for every x ∈ A, ‖{xxx}‖ = ‖x‖3.

complex Hilbert spaces: {xyz} = 1
2 (〈x , y〉z + 〈z , y〉x)

C*-algebras, S(H), A(H): {xyz} = 1
2 (xy∗z + zy∗x).
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GBP on JB*-triples

Theorem (D. Ilǐsević, LAA, 2010)

Let A be a JB*-triple and let P : A→ A be a linear projection.
Then P + λP is an isometry for some modulus one complex
number λ 6= 1 if and only if one of the following holds:

(i) P is hermitian (≡ bicircular),

(ii) λ = −1 and P = 1
2 (I + ϕ) for some linear isometry ϕ : A→ A

satisfying ϕ2 = I .
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GBP on Arbitrary Complex Banach Spaces

Theorem (P.-K. Lin, JMAA, 2008)

Let X be a complex Banach space and let P : X → X be a linear
projection. Then P + λP is an isometry for some modulus one
complex number λ 6= 1 if and only if one of the following holds:

(i) P is hermitian (≡ bicircular),

(ii) λ = e
2πi
n for some integer n ≥ 2.

Furthermore, if n is any integer such that n ≥ 2, then for λ = e
2πi
n

there is a complex Banach space X and a nontrivial linear
projection P on X such that P + λP is an isometry.
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bicircular projections on S(H) and A(H):
L.L. Stachó and B. Zalar, LAA, 2004

generalized bicircular projections on Sn(C) and Kn(C):
M. Fošner, D. Ilǐsević and C.K. Li, LAA, 2007

generalized bicircular projections on S(H) and A(H):
A. Fošner and D. Ilǐsević, submitted

Dijana Ilǐsević Generalized Bicircular Projections



Bicircular Projections
Generalized Bicircular Projections

GBP on Some Matrix and Operator Spaces

bicircular projections on S(H) and A(H):
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Surjective Linear Isometries on S(H) and A(H)

Every surjective linear isometry ϕ : A→ A, where A is S(H) or
A(H), satisfies

ϕ(XY ∗X ) = ϕ(X )ϕ(Y )∗ϕ(X )

for all X ,Y ∈ A.

The following theorem gives an explicit formula for ϕ.

Theorem (A. Fošner and D. Ilǐsević, submitted)

Let A be S(H) or A(H) and let ϕ : A→ A be a surjective linear
isometry. Then there exists a unitary U ∈ B(H) such that ϕ has
the form X 7→ UXUt .
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GBP on S(H) and A(H)

Corollary

Let P : S(H)→ S(H) be a nontrivial linear projection and λ 6= 1 a
modulus one complex number. Then P + λP is an isometry if and
only if λ = −1 and there exists Q = Q∗ = Q2 ∈ B(H) such that P
or P has the form X 7→ QXQt + (I − Q)X (I − Qt).

Corollary

Let P : A(H)→ A(H) be a nontrivial linear projection and λ 6= 1 a
modulus one complex number. Then P + λP is an isometry if and
only if one of the following holds:

(i) P or P has the form X 7→ QX + XQt , where Q = x ⊗ x for
some norm one x ∈ H,

(ii) λ = −1 and there exists Q = Q∗ = Q2 ∈ B(H) such that P
or P has the form X 7→ QXQt + (I − Q)X (I − Qt).
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