Generalized Bicircular Projections on Some Matrix and Operator Spaces

Dijana Ilišević

University of Zagreb, Croatia

Applied Linear Algebra (ALA 2010) Novi Sad, Serbia, May 24–28, 2010

[Bicircular Projections](#page-0-0) [Generalized Bicircular Projections](#page-6-0)

Definition of a Bicircular Projection

Definition

Let X be a complex Banach space and let $P: \mathcal{X} \to \mathcal{X}$ be a linear projection. A projection P is called **bicircular** if the mapping $P + \lambda \overline{P}$ is an isometry for all modulus one complex numbers λ .

Example

Every orthogonal projection on a complex Hilbert space is bicircular.

Symmetric and Antisymmetric Operators

Let $B(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H . Throughout we fix an orthonormal basis ${e_{\lambda} : \lambda \in \Lambda}$ of H.

Let $T \in B(H)$. If $S \in B(H)$ is such that

$$
\langle \mathit{Te}_{\lambda}, e_{\mu} \rangle = \langle \mathit{Se}_{\mu}, e_{\lambda} \rangle \qquad (\lambda, \mu \in \Lambda),
$$

then S is called the transpose of T associated to the basis $\{e_{\lambda} : \lambda \in \Lambda\}$ and it is denoted by \mathcal{T}^{t} .

\n- $$
S(\mathcal{H}) = \{ T \in B(\mathcal{H}) : T^t = T \}
$$
 symmetric operators
\n- $A(\mathcal{H}) = \{ T \in B(\mathcal{H}) : T^t = -T \}$ antisymmetric operators
\n

Bicircular Projections on Some Operator Spaces

Theorem (L.L. Stach´o and B. Zalar, LAA, 2004)

- (i) Let $P : B(H) \to B(H)$ be a bicircular projection. Then P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q = Q^* = Q^2 \in B(\mathcal{H}).$
- (ii) Let $P: S(H) \to S(H)$ be a bicircular projection. Then either $P = 0$ or $P = I$.
- (iii) Let P : $A(H) \rightarrow A(H)$ be a bicircular projection. Then P or \overline{P} has the form $X \mapsto QX + XQ^t$ with $Q = x \otimes x$ for some unit vector $x \in \mathcal{H}$.
	- the structure of bicircular projections on an arbitrary C*-algebra: M. Fošner and D. Ilišević, Comm. Algebra, 2005.

Bicircular Projections on Some Operator Spaces

Theorem (L.L. Stach´o and B. Zalar, LAA, 2004)

- (i) Let $P : B(H) \to B(H)$ be a bicircular projection. Then P has the form $X \mapsto QX$ or $X \mapsto XQ$ for some $Q = Q^* = Q^2 \in B(\mathcal{H}).$
- (ii) Let $P: S(H) \to S(H)$ be a bicircular projection. Then either $P = 0$ or $P = I$.
- (iii) Let P : $A(H) \rightarrow A(H)$ be a bicircular projection. Then P or \overline{P} has the form $X \mapsto QX + XQ^t$ with $Q = x \otimes x$ for some unit vector $x \in \mathcal{H}$.
	- the structure of bicircular projections on an arbitrary C*-algebra:
		- M. Fošner and D. Ilišević, Comm. Algebra, 2005.

[Bicircular Projections](#page-0-0) [Generalized Bicircular Projections](#page-6-0)

Hermitian Projections

Definition

A bounded linear operator $T : \mathcal{X} \to \mathcal{X}$ is said to be **hermitian** if $e^{i\varphi\mathcal{T}}$ is an isometry for all $\varphi\in\mathbb{R}.$

Theorem (J. Jamison, LAA, 2007)

A linear projection on X is a bicircular projection if and only if it is a hermitian projection.

Definition of a Generalized Bicircular Projection

Definition

A projection $P: \mathcal{X} \to \mathcal{X}$ is called **generalized bicircular** if the mapping $P + \lambda \overline{P}$ is an isometry for some modulus one complex number $\lambda \neq 1$.

- These mappings were first studied by M. Fošner, D. Ilišević and C.K. Li, LAA, 2007.
- The term "generalized bicircular projection"(GBP) first appeared in a paper by F. Botelho and J. Jamison, PAMS, 2008.

GBP on $S_n(\mathbb{C})$

Let A be $S_n(\mathbb{C})$ or $K_n(\mathbb{C})$. A norm $\|\cdot\|$ on A is said to be a unitary congruence invariant norm if

 $\|UXU^t\| = \|X\|$

for all unitary $U \in M_n(\mathbb{C})$ and all $X \in A$.

Let $\|\cdot\|$ be a unitary congruence invariant norm on $S_n(\mathbb{C})$, which is not a multiple of the Frobenius norm, and let K be the isometry group of $\|\cdot\|$. Suppose $P : S_n(\mathbb{C}) \to S_n(\mathbb{C})$ is a non-trivial linear projection and $\lambda \neq 1$ a modulus one complex number. Then $P + \lambda \overline{P} \in \mathcal{K}$ if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or P has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t).$

GBP on $S_n(\mathbb{C})$

Let A be $S_n(\mathbb{C})$ or $K_n(\mathbb{C})$. A norm $\|\cdot\|$ on A is said to be a unitary congruence invariant norm if

 $\|UXU^t\| = \|X\|$

for all unitary $U \in M_n(\mathbb{C})$ and all $X \in A$.

Theorem (M. Fošner, D. Ilišević and C.K. Li, LAA, 2007)

Let $\|\cdot\|$ be a unitary congruence invariant norm on $S_n(\mathbb{C})$, which is not a multiple of the Frobenius norm, and let K be the isometry group of $\|\cdot\|$. Suppose $P : S_n(\mathbb{C}) \to S_n(\mathbb{C})$ is a non-trivial linear projection and $\lambda \neq 1$ a modulus one complex number. Then $P + \lambda \overline{P} \in \mathcal{K}$ if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or \overline{P} has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t).$

GBP on $K_n(\mathbb{C})$

Theorem (M. Fošner, D. Ilišević and C.K. Li, LAA, 2007)

Let $n > 3$ and $\|\cdot\|$ be a unitary congruence invariant norm on $K_n(\mathbb{C})$, which is not a multiple of the Frobenius norm. Let K be the isometry group of $\|\cdot\|$. Suppose $P: K_n(\mathbb{C}) \to K_n(\mathbb{C})$ is a non-trivial linear projection and $\lambda \neq 1$ a modulus one complex number. Then $P + \lambda \overline{P} \in \mathcal{K}$ if and only if one of the following holds.

- (a) There exists $Q = vv^*$ for a unit vector $v \in \mathbb{C}^n$ such that P or \overline{P} has the form $X \mapsto QX + XQ^t.$
- (b) $\lambda = -1$, $\mathcal{K} = G$ and there exists $Q = Q^* = Q^2 \in M_n(\mathbb{C})$ such that P or \overline{P} has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t)$.
- (c) $(\lambda, n) = (-1, 4)$, $\psi \in \mathcal{K}$, and there is $U \in U(\mathbb{C}^{4})$, satisfying $\overline{\psi}(U^{\mathrm t}X U)=\overline{U}\psi(X)U^*$ for all $X\in K_4(\mathbb C),$ such that P or $\overline P$ has the form $X \mapsto (X + \psi(U^{\dagger}XU))/2 = (X + \overline{U}\psi(X)U^*)/2$.

A JB^{*}-triple is a complex Banach space A together with a continuous triple product $\{\cdots\}$: $A \times A \times A \rightarrow A$ such that (i) $\{xyz\}$ is linear in x and z and conjugate linear in y; (ii) $\{xyz\} = \{zyx\}$; (iii) for any $x \in A$, the operator $\delta(x) : A \to A$ defined by $\delta(x)y = \{xxy\}$ is hermitian with nonnegative spectrum; (iv) $\delta(x)\{abc\} = \{\delta(x)a, b, c\} - \{a, \delta(x)b, c\} + \{a, b, \delta(x)c\};$ (v) for every $x \in A$, $\|\{xxx\}\| = \|x\|^3$.

 \bullet complex Hilbert spaces: 2

 \bullet C*-algebras, $S(\mathcal{H})$, $A(\mathcal{H})$:

$$
\begin{aligned} \{xyz\} &= \frac{1}{2}(\langle x, y \rangle z + \langle z, y \rangle x) \\ \{xyz\} &= \frac{1}{2}(xy^*z + zy^*x). \end{aligned}
$$

GBP on JB*-triples

Theorem (D. Ilišević, LAA, 2010)

Let A be a JB*-triple and let P : $A \rightarrow A$ be a linear projection. Then $P + \lambda \overline{P}$ is an isometry for some modulus one complex number $\lambda \neq 1$ if and only if one of the following holds: (i) P is hermitian (\equiv bicircular), (ii) $\lambda = -1$ and $P = \frac{1}{2}$ $\frac{1}{2}(I + \varphi)$ for some linear isometry $\varphi : A \to A$ satisfying $\varphi^2=I$.

GBP on Arbitrary Complex Banach Spaces

Theorem (P.-K. Lin, JMAA, 2008)

Let X be a complex Banach space and let $P : \mathcal{X} \to \mathcal{X}$ be a linear projection. Then $P + \lambda \overline{P}$ is an isometry for some modulus one complex number $\lambda \neq 1$ if and only if one of the following holds:

(i)
$$
P
$$
 is hermitian (\equiv bicircular),

(ii)
$$
\lambda = e^{\frac{2\pi i}{n}}
$$
 for some integer $n \geq 2$.

Furthermore, if n is any integer such that $n \geq 2$, then for $\lambda = e^{\frac{2\pi i}{n}}$ there is a complex Banach space $\mathcal X$ and a nontrivial linear projection P on X such that $P + \lambda \overline{P}$ is an isometry.

GBP on Some Matrix and Operator Spaces

- bicircular projections on $S(H)$ and $A(H)$: L.L. Stachó and B. Zalar, LAA, 2004
- **•** generalized bicircular projections on $S_n(\mathbb{C})$ and $K_n(\mathbb{C})$: M. Fošner, D. Ilišević and C.K. Li, LAA, 2007
- generalized bicircular projections on $S(H)$ and $A(H)$: A. Fošner and D. Ilišević, submitted

GBP on Some Matrix and Operator Spaces

- bicircular projections on $S(H)$ and $A(H)$: L.L. Stachó and B. Zalar, LAA, 2004
- **•** generalized bicircular projections on $S_n(\mathbb{C})$ and $K_n(\mathbb{C})$: M. Fošner, D. Ilišević and C.K. Li, LAA, 2007
- **•** generalized bicircular projections on $S(\mathcal{H})$ and $A(\mathcal{H})$: A. Fošner and D. Ilišević, submitted

Surjective Linear Isometries on $S(H)$ and $A(H)$

Every surjective linear isometry $\varphi : A \to A$, where A is $\mathcal{S}(\mathcal{H})$ or $A(H)$, satisfies

$$
\varphi(XY^*X)=\varphi(X)\varphi(Y)^*\varphi(X)
$$

for all $X, Y \in A$.

The following theorem gives an explicit formula for φ .

Theorem (A. Fošner and D. Ilišević, submitted)

Let A be $S(H)$ or $A(H)$ and let $\varphi : A \to A$ be a surjective linear isometry. Then there exists a unitary $U \in B(H)$ such that φ has the form $X \mapsto U X U^t$.

GBP on $S(H)$ and $A(H)$

Corollary

Let $P : S(H) \to S(H)$ be a nontrivial linear projection and $\lambda \neq 1$ a modulus one complex number. Then $P + \lambda \overline{P}$ is an isometry if and only if $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in B(H)$ such that P or \overline{P} has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t).$

Corollary

Let $P : A(H) \to A(H)$ be a nontrivial linear projection and $\lambda \neq 1$ a modulus one complex number. Then $P + \lambda \overline{P}$ is an isometry if and only if one of the following holds:

(i) P or \overline{P} has the form $X \mapsto QX + XQ^t$, where $Q = x \otimes x$ for some norm one $x \in \mathcal{H}$,

(ii) $\lambda = -1$ and there exists $Q = Q^* = Q^2 \in B(H)$ such that P or \overline{P} has the form $X \mapsto QXQ^t + (I - Q)X(I - Q^t).$