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Introduction

Linearization is the transformation of a polynomial matrix
T(s) = Tnsn + Tn−1sn−1 + ...+ T0, Ti ∈ Cp×p to a corresponding matrix
pencil L(s) = sL1 − L0, Li ∈ Cnp×np having the same finite divisor
structure.

(+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.
(+) The algebraic properties of T(s) can be studied through the
corresponding linearization.
(+) Reliable numerical algorithms are available for matrix pencils.
(+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 2 / 17



. . . . . .

Introduction

Linearization is the transformation of a polynomial matrix
T(s) = Tnsn + Tn−1sn−1 + ...+ T0, Ti ∈ Cp×p to a corresponding matrix
pencil L(s) = sL1 − L0, Li ∈ Cnp×np having the same finite divisor
structure.

(+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.

(+) The algebraic properties of T(s) can be studied through the
corresponding linearization.
(+) Reliable numerical algorithms are available for matrix pencils.
(+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 2 / 17



. . . . . .

Introduction

Linearization is the transformation of a polynomial matrix
T(s) = Tnsn + Tn−1sn−1 + ...+ T0, Ti ∈ Cp×p to a corresponding matrix
pencil L(s) = sL1 − L0, Li ∈ Cnp×np having the same finite divisor
structure.

(+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.
(+) The algebraic properties of T(s) can be studied through the
corresponding linearization.

(+) Reliable numerical algorithms are available for matrix pencils.
(+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 2 / 17



. . . . . .

Introduction

Linearization is the transformation of a polynomial matrix
T(s) = Tnsn + Tn−1sn−1 + ...+ T0, Ti ∈ Cp×p to a corresponding matrix
pencil L(s) = sL1 − L0, Li ∈ Cnp×np having the same finite divisor
structure.

(+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.
(+) The algebraic properties of T(s) can be studied through the
corresponding linearization.
(+) Reliable numerical algorithms are available for matrix pencils.

(+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 2 / 17



. . . . . .

Introduction

Linearization is the transformation of a polynomial matrix
T(s) = Tnsn + Tn−1sn−1 + ...+ T0, Ti ∈ Cp×p to a corresponding matrix
pencil L(s) = sL1 − L0, Li ∈ Cnp×np having the same finite divisor
structure.

(+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.
(+) The algebraic properties of T(s) can be studied through the
corresponding linearization.
(+) Reliable numerical algorithms are available for matrix pencils.
(+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 2 / 17



. . . . . .

Products of elementary matrices
The most common linearizations of T(s) are the well known first and
second companion linearizations P(s) and P̂(s)

P(s) = s


Ip 0 · · · 0

0 Ip
. . . ...

... . . . . . . 0
0 · · · 0 Tn

−


0 Ip · · · 0
... . . . . . . ...
0 · · · 0 Ip

−T0 −T1 · · · −Tn−1

 ,

P̂(s) = s


Ip 0 · · · 0

0 Ip
. . . ...

... . . . . . . 0
0 · · · 0 Tn

−


0 · · · 0 −T0
Ip

. . . ...
...

... . . . 0 −Tn−2
0 · · · Ip −Tn−1



(+) P(s), P̂(s) can be constructed by inspection of the coefficient
matrices of T(s).
(+) The matrices involved are relatively sparse.
(-) In case the matrix T(s) exhibits symmetries, these are not
reflected on P(s) and P̂(s).
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Introduction

Existing approaches to the problem of linearizations

Additive construction approach - [Mackey et al., 2006],
[Higham et al., 2006].
Multiplicative approach - [Lancaster, 1961],
[Lancaster and Prells, 2007].
Permuted factors approach - [Fiedler, 2003],
[Antoniou and Vologiannidis, 2004] and
[Antoniou and Vologiannidis, 2006].

The present work extends the permuted factors approach focusing
on

The construction of (companion like) linearizations using the
unperturbed coefficients of T(s).
Controlling certain aspects of the structure of the resulting pencils in
order to preserve selected structural properties of the polynomial
matrix.
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Elementary matrices

.Definition (Elementary matrices)

..

.. ..

.

.

Let T(s) a regular polynomial matrix. Then we define the following
elementary matrices corresponding to T(s) as follows:

Ak =


Ip(k−1) 0 · · ·

0 Ck
. . .

... . . . Ip(n−k−1)

 , k = 1,2, . . . ,n− 1,

where
Ck =

[
0 Ip
Ip −Tk

]
and

A0 = diag{−T0, Ip(n−1)}.

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 5 / 17
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Products of elementary matrices

.Definition..

.. ..

.

.

Let I = (i1, i2, . . . , im) be an ordered tuple containing indices from
{0,1,2, . . . ,n− 1}. Then AI := Ai1Ai2 · · ·Aim .

.
Theorem..

.. ..

.

.

[Antoniou and Vologiannidis, 2004] Let i, j ∈ {0,1,2, . . . ,n− 1}. Then
AiAj = AjAi if and only if |i− j| ̸= 1.

.Definition..

.. ..

.

.

Let I1 and I2 be two tuples. I1 will be termed equivalent to I2 (I1 ∼ I2)
if and only if AI1 = AI2 .
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. . . . . .

Products of elementary matrices

.Definition..

.. ..

.

.

Let I = (i1, i2, . . . , im) be an ordered tuple containing indices from
{0,1,2, . . . ,n− 1}. Then AI := Ai1Ai2 · · ·Aim .

.
Theorem..

.. ..

.

.

[Antoniou and Vologiannidis, 2004] Let i, j ∈ {0,1,2, . . . ,n− 1}. Then
AiAj = AjAi if and only if |i− j| ̸= 1.

.Definition..

.. ..

.

.

Let I1 and I2 be two tuples. I1 will be termed equivalent to I2 (I1 ∼ I2)
if and only if AI1 = AI2 .

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 6 / 17



. . . . . .

Products of elementary matrices

.Definition..

.. ..

.

.

Let I = (i1, i2, . . . , im) be an ordered tuple containing indices from
{0,1,2, . . . ,n− 1}. Then AI := Ai1Ai2 · · ·Aim .

.
Theorem..

.. ..

.

.

[Antoniou and Vologiannidis, 2004] Let i, j ∈ {0,1,2, . . . ,n− 1}. Then
AiAj = AjAi if and only if |i− j| ̸= 1.

.Definition..

.. ..

.

.

Let I1 and I2 be two tuples. I1 will be termed equivalent to I2 (I1 ∼ I2)
if and only if AI1 = AI2 .

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 6 / 17



. . . . . .

Products of elementary matrices
We will use the following notation:

Let k, l ∈ Z with k ≤ l. Then (k : l) :=
{

(k, k+ 1, ..., l), k ≤ l
∅, k > l

A∅ = Inp.
If I = (i1, i2, . . . , im) then Ī =(im, im−1, . . . , i1).

.Definition..

.. ..

.

.

A product of elementary matrices AI will be termed operation free iff
the block elements of AI are either 0, Ip or −Ti (for generic matrices Ti).

.Example

..

.. ..

.

.

A0A1A0 =

 0 −T0
−T0 −T1

Ip(n−2)

 is operation free,

A1A0A1 =

 Ip −T1
−T1 T21 − T0

Ip(n−2)

 is not.

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 7 / 17
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Products of elementary matrices

.Lemma (Range Product)

..

.. ..

.

.

The product A(k:l) is of the form

A(k:l) =





Ik−1
01×(l−k+1) I

−Tk
Il−k+1

...
−Tl

In−l−1


, k > 0


01×l −T0

−T1

Il
...

−Tl
In−l−1

 , k = 0

, k ≤ l ≤ n− 1

Dr Vologiannidis Stavros (@teiser.gr) 25 May 2010 8 / 17
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Products of elementary matrices
.Definition (Standard forms)..

.. ..

.

.

Column standard form:
0
∏

i=n−1
A(ci :i), where ci ∈ (0 : i) ∪ {∞}.

Row standard form: AI =
n−1
∏
j=0

A
(rj :j)

, where rj ∈ (0 : j) ∪ {∞}.

.Example

..

.. ..

.

.

Consider (A0A1A2A3)(A0A1A2)(A0A1)(A0) =


0 0 0 −T0
0 0 −T0 −T1
0 −T0 −T1 −T2

−T0 −T1 −T2 −T3

.
A row standard form is (A0)(A1A0)(A2A1A0)(A3A2A1A0).

.Theorem..

.. ..

.

.Column and row standard forms are operation free.
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. . . . . .

Products of elementary matrices

.Definition (Successor Infixed Property)

..

.. ..

.

.

Let I = (i1, i2, . . . , ik) be an index tuple. I will be called successor infixed
if and only if for every pair of indices ia, ib ∈ I , with 1 ≤ a < b ≤ k,
satisfying ia = ib, there exists at least one index ic = ia + 1, such that
a < c < b.

.Theorem (Characterization of operation free products)

..

.. ..

.

.

AI is operation free iff any of the following statements hold
...1 I satisfies the SIP.
...2 AI can be written in the column standard form.
...3 AI can be written in a row standard form.
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satisfying ia = ib, there exists at least one index ic = ia + 1, such that
a < c < b.

.Theorem (Characterization of operation free products)

..

.. ..

.

.

AI is operation free iff any of the following statements hold
...1 I satisfies the SIP.
...2 AI can be written in the column standard form.
...3 AI can be written in a row standard form.
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. . . . . .

Products of elementary matrices
We can arrive to similar results using inverses of elementary
matrices i.e.

A−k := A−1
k =


Ip(k−1) 0 · · ·

0 C−1
k

. . .
... . . . Ip(n−k−1)

 , k = 1, . . . ,n− 1

C−k := C−1
k =

[
Tk Ip
Ip 0

]
and A−n = diag{Ip(n−1),Tn}.

Row and column standard forms can be defined accordingly.
Similar characterization of operation free products using negative
indices can also be derived.

.Example

..

.. ..

.

.

(A−4A−3A−2A−1)(A−4A−3A−2)(A−4A−3)(A−4) =


T1 T2 T3 T4
T2 T3 T4 0
T3 T4 0 0
T4 0 0 0

.
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. . . . . .

.Theorem (Linearizations of polynomial matrices)

..

.. ..

.

.

Let T(s) be a polynomial matrix of degree n with T0,Tn nonsingular.

Choose k ∈ {1,2, . . . ,n}.
Let P be a permutation of the tuple (0 : k− 1) and LP ,RP tuples
with elements from (0 : k− 2) s.t. (LP ,P ,RP ) satisfies the SIP.
Let N be a permutation of the tuple (−n : −k) and LN ,RN tuples
with elements from (−n : −k− 1) s.t. (LN ,N ,RN ) satisfies the SIP.
Then the matrix pencil

sA(LN ,LP ,N ,RP ,RN ) − A(LN ,LP ,P ,RP ,RN )

is a linearization of T(s) and its coefficients are operation
free matrices.

.Lemma..

.. ..

.

.A product AI is block symmetric if-f I ∼ Ī.

Notice that T0 is allowed to be singular if 0 /∈ (LP ,RP ) while the
same holds for Tn if −n /∈ (LN ,RN ).
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. . . . . .

.Corollary (Lancaster’s symmetric linearizations)

..

.. ..

.

.

The symmetric linearizations Lk(s) = sSk−1 − Sk, k = 1, . . . ,n of
[Lancaster and Prells, 2007] can be produced (T0 and Tn must be
nonsingular) by using the following sets to the previous theorem

P = (0 : k− 1),N=(−n : −k),
RP = ((0 : k− 2), . . . , (0 : 0)),
RN = ((−n : −k− 1), . . . , (−n : −n)),
LP = ∅,LN = ∅.

.
Example (L3(s))..

.. ..

.

.

Using k = 3, P = (0,1,2), N=(−5,−4,−3), RP = (0,1,0),
RN = (−5,−4,−5), LP = LN = ∅.

L3(s) = s


0 −T0 0 0 0

−T0 −T1 0 0 0
0 0 T3 T4 T5
0 0 T4 T5 0
0 0 T5 0 0

−


0 0 −T0 0 0
0 −T0 −T1 0 0

−T0 −T1 −T2 0 0
0 0 0 T4 T5
0 0 0 T5 0

 .
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. . . . . .

New symmetric linearizations

.
Example (Lancaster’s modified L3(s))..

.. ..

.

.

Using k = 3 and P = (1,2,0), N=(−5,−3,−4), RP = (1), LN = (−4),
LP = RN = ∅

L
′
3(s) = s


0 I 0 0 0
I −T1 0 0 0
0 0 T3 T4 I
0 0 T4 T5 0
0 0 I 0 0

−


0 0 I 0 0
0 −T0 −T1 0 0
I −T1 −T2 0 0
0 0 0 T4 I
0 0 0 I 0

 .

Notice that T0 and Tn can be singular.
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. . . . . .

Conclusions

A new family of linearizations has been given.

The members of the new family are operation free.
Particular members can be constructed according to requirements
dictated by the structure of the polynomial matrix.
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