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Introduction

Linearization is the transformation of a polynomial matrix

T(s) =Tps" + Tp 15"+ ...+ To, T; € CP*P to a corresponding matrix
pencil L(s) = sL; — Lg, L; € C"P*"P having the same finite divisor
structure.
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T(s) =Tps" + Tp 15"+ ...+ To, T; € CP*P to a corresponding matrix
pencil L(s) = sL; — Lg, L; € C"P*"P having the same finite divisor
structure.

@ (+) Linearizations have been traditionally used to reduce high order
linear dynamical systems to first order equivalents.

@ (+) The algebraic properties of T(s) can be studied through the
corresponding linearization.

@ (+) Reliable numerical algorithms are available for matrix pencils.

@ (+) Special techniques exist for structured matrix pencils
(symmetric, Hamiltonian etc.).
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Products of elementary matrices

The most common linearizations of T(s) are the well known first and
second companion linearizations P(s) and P(s)

o 0 -0 0o I 0
P(s)=s 0 b ; - :
0 0o T, -To —T —Th-1
b 0 0 0 0 —To
P(s)=s 0 o e
0 0 T,
0 0 Tjp 0
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Products of elementary matrices

The most common linearizations of T(s) are the well known first and
second companion linearizations P(s) and P(s)

b 0 -0 0 I - 0
P(s)=s 0 /o : . : ,
0 0o T, —To —T1 —Th-1
b 0 - 0 0 0 -T,
P(s)=s 0 o e
0 0 T,
0 0 Tn 0 Ip _Tn_l

@ (+) P(s), P(s) can be constructed by inspection of the coefficient
matrices of T(s).
@ (+) The matrices involved are relatively sparse

(-) In case the matrix T(s) exhibits symmetries, these are not
reflected on P(s) and P(s).
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Introduction

@ Existing approaches to the problem of linearizations

e Additive construction approach - [Mackey et al., 2006],
[Higham et al., 2006].

o Multiplicative approach - [Lancaster, 1961],
[Lancaster and Prells, 2007].

e Permuted factors approach - [Fiedler, 2003],
[Antoniou and Vologiannidis, 2004] and
[Antoniou and Vologiannidis, 2006].

@ The present work extends the permuted factors approach focusing
on

@ The construction of (companion like) linearizations using the
unperturbed coefficients of T(s).
e Controlling certain aspects of the structure of the resulting pencils in

order to preserve selected structural properties of the polynomial
matrix.
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Elementary matrices

Definition (Elementary matrices)

Let T(s) a regular polynomial matrix. Then we define the following
elementary matrices corresponding to T(s) as follows:

Ipk-1) O
Ag = 0 C  k=1,2,....n—1,
: . Ip(n—k-1)
where o
= [ Ip —Prk }
and

Ap = diag{—To, Ip(n—l) }
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Products of elementary matrices

{0,1,2,...,n—1}. Then A7 := A A, --- A

im*
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A,'Aj = AjA,‘ if and on/y if |I —j| 75 1.
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Products of elementary matrices

Let Z = (i1,i3,...,im) be an ordered tuple containing indices from
{0,1,2,...,n—1}. Then Az := A A;, ---A

im*

Theorem

[Antoniou and Vologiannidis, 2004] Leti,j € {0,1,2,...,n—1}. Then
A,'Aj = AjA,‘ if and on/y if |I —j| 75 1.

Let 7; and Z, be two tuples. Z; will be termed equivalent to Z, (Z; ~ Z5)
if and only if Az, = Az,.
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Products of elementary matrices

@ We will use the following notation:
, n [ (kk+1, ) k<]
oLetk,lethhkgl.Then(k.l).f{ kol
o A@ = Inp
o IfZ = (i1,ip,....im) then T =(im,im_1,...,i1).
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Products of elementary matrices

@ We will use the following notation:
, n [ (kk+1, ) k<]
oLetk,leZW|thl<§/.Then(k.l).f{ kol
o A@ = Inp
o IfZ = (i1, iz, ....im) then Z =(im,im_1.....i1).

A product of elementary matrices Az will be termed operation free iff
the block elements of A7 are either 0,/, or —T; (for generic matrices T;).
Example

[ 0 —Tp
AoA1Ag=| —To —T1 is operation free,

I Ip(n-2)
A1ApA; = —T1 T% = T() is not.

L Ip(n-2)

v
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Products of elementary matrices

Lemma (Range Product)

The product Ay is of the form

lk-1 ]
Oty | !
_Tk
l—k+1 5
Inflfl
O1x | —=To
_Tl
I E k=0
_TI
Inflfl

k>0

k<I<n-1
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Products of elementary matrices

Definition (Standard forms)

0
@ Column standard form: [ A, where ¢; € (0:i) U {co}.
i=n—1
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Products of elementary matrices

Definition (Standard forms)

0
@ Column standard form: [ A, where ¢; € (0:i) U {co}.
i=n—1

n-1
@ Row standard form: Az = T] AW’ where rj € (0 :j) U {oo}.
=0

0 0 0 —To

0 0 -Ty -Th

0 -To -1 -Tof
—To —T1 —Tp —T3
A row standard form is (Ag)(A140)(A2A1A0)(A3A2A1A0).
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Products of elementary matrices

Definition (Standard forms)

0
@ Column standard form: [ A, where ¢; € (0:i) U {co}.
i=n—1

n-1
@ Row standard form: Az = T] AW’ where rj € (0 :j) U {oo}.
=0

0 0 0 —Tyo

0 0 -Tog —-T1

0 -To -1 -Tof
—To —T1 —T>» T3
A row standard form is (Ag)(A140)(A2A1A0)(A3A2A1A0).

Consider (ApA1A2A3)(A0A1A2)(A0A1) (Ao) =

Column and row standard forms are operation free. \
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Products of elementary matrices

Definition (Successor Infixed Property)

Let Z = (i1, /..., ix) be an index tuple. Z will be called successor infixed
if and only if for every pair of indices i, iy, € Z, with 1 < a < b <k,
satisfying iz = ip, there exists at least one index ic = iz + 1, such that
a<c<hb.
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Products of elementary matrices

Definition (Successor Infixed Property)

Let Z = (i1, /3, ..., ix) be an index tuple. Z will be called successor infixed
if and only if for every pair of indices i, iy, € Z, with 1 < a < b <k,
satisfying iz = ip, there exists at least one index ic = iz + 1, such that

a<c<b. )

Theorem (Characterization of operation free products)

Az is operation free iff any of the following statements hold
© I satisfies the SIP.
@ A7 can be written in the column standard form.
@ A7 can be written in a row standard form.
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Products of elementary matrices

@ We can arrive to similar results using inverses of elementary
matrices i.e.

Ipk-1) O
A=At = 0 Ct ,k=1,...,n—1

Ip(n—k-1)

_ Te | .
Cy=Cl= [ ka 5 ] and A_, = diag{lp(n_1), Tn}-

@ Row and column standard forms can be defined accordingly.
@ Similar characterization of operation free products using negative
indices can also be derived.

T T2 T T
T Ty T @
T3 T4 0 O
T, 0 0 O
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Theorem (Linearizations of polynomial matrices)
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Theorem (Linearizations of polynomial matrices)

@ Let T(s) be a polynomial matrix of degree n with Ty, T, nonsingular.

@ Choose k € {1,2,...,n}.

@ Let P be a permutation of the tuple (0 : k— 1) and Lp, Rp tuples
with elements from (0 : k — 2) s.t. (Lp, P, Rp) satisfies the SIP.

@ Let N be a permutation of the tuple (—n : —k) and Lr, R tuples
with elements from (—n: —k — 1) s.t. (Lxr, N, R ) satisfies the SIP.

@ Then the matrix pencil

SA(Ly LN Rp Ry) ~ ALy Lp P Rp Ry)

is a linearization of T(s) and its coefficients are operation
free matrices.

A product Az is block symmetric if-f T ~ I.

@ Notice that Ty is allowed to be singular if 0 ¢ (Lp, Rp) while the
same holds for T, if —n & (L7, Ry ).
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Corollary (Lancaster’s symmetric linearizations)

The symmetric linearizations Ly(s) = sSx_1 — Sk, k=1,..., n of
[Lancaster and Prells, 2007] can be produced (Tq and T, must be
nonsingular) by using the following sets to the previous theorem

P = (0:k—1),N=(-n:—k),
Rp = ((0:k—2),...,(0:0)),

Ry = ((—=n:—k-1),....(=n: —n)),
[,73 = @,[,N’ZQ-
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Corollary (Lancaster’s symmetric linearizations)

The symmetric linearizations Ly(s) = sSx_1 — Sk, k=1,..., n of
[Lancaster and Prells, 2007] can be produced (Tq and T, must be
nonsingular) by using the following sets to the previous theorem

P = (0:k—1),N=(—n:—k),

Rp = ((0:k—2),....(0:0)),
Ry = ((=n:—k—1),...,(=n:—n)),
Lp = O, Ly=0.

Example (L3(s))

Using k =3, P = (0,1,2), N=(—5, -4, —3), Rp = (0,1,0),
Ry = (=5,—4,-5), Lp = L = @.

0 -T, 0 0 O 0 0 -T, 0 O
Ty -T; 0 0 0 0 T, -T; 0 O

L3 (S) =S 0 0 T3 Ty Ts| — _TO —-T; —T> O 0
0 0 T4 T5 O 0 0 0 T4 Ts

0 0 Ts 0 0 0O 0 0 Ts O
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New symmetric linearizations

Example (Lancaster’s modified L3(s))

Usingk =3 and P = (1,2,0), N=(-5,-3,-4), Rp = (1), Ly = (—4),
Lp=Ry=9

O /I 0 0 0 0 0 I 0 0
| -T, 0 0 O 0 -Tp -T;1 0 0
L3(s)=s|0 O T3 T4 I|—|1I -T; -T, 0 O
0 0 T4 Ts O 0 0 0 T4 I
0 0 I 0 0 0 0 0 I 0

Notice that Ty and T, can be singular.
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Conclusions

@ A new family of linearizations has been given.
@ The members of the new family are operation free.

@ Particular members can be constructed according to requirements
dictated by the structure of the polynomial matrix.
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