Incremental condition estimation with inverse
triangular factors

Jurjen Duintjer Tebbens
joint work with

Miroslav Tuma

Institute of Computer Science
Academy of Sciences of the Czech Republic

ALA 2010, Novi Sad, May 25, 2010.



/%’6/ 1. Motivation: BIF

e This work is motivated by the recently introduced Balanced Incomplete
Factorization (BIF) method for LDU decomposition [Bru, Marin, Mas,
TOma - 2008] - see the after-next talk ...

 The method is remarkable, among others, in that it computes the
Inverse triangular factors simultaneously during the factorization
process.

e Can the presence of the inverse factors in BIF be exploited ?

Perhaps the first thing that comes to mind, is to use the inverse triangular
factors for improved condition estimation.

We will see that exploiting the inverse factors for better condition
estimation is possible, but not as straightforward as it may seem.
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4’6/ 2. Incremental condition estimation (ICE)

/

We assume A is real and positive definite symmetric. If
A=LL"
Is the Cholesky decomposition of A, the condition number of A satisfies
k(A) = k(L)? = k(L1)2.

We focus on estimation of the 2-norm condition number of L?. This can
be done cheaply with a technique called incremental condition number
estimation. Main idea: Subsequent estimation of leading submatrices:

LT = = all columns are accessed only once.
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4’6/ 2. Incremental condition estimation (ICE)

/

We will call the original incremental technique, introduced by Bischof
[Bischof - 1990], simply incremental condition estimation (ICE):

Let R be upper triangular with a given approximate maximal singular value
ocmazicE(R) and corresponding approximate singular vector y, ||y|| = 1,

UmaxICE(R) — ||yTRH ~ Umam(R) — ||I:£l||8£{1 ||ZCTRH

ICE approximates the maximal singular value of the extended matrix
o R v
0 =

., over all s, csatisfying ¢*+ s* = 1.

by maximizing

(e 95
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4’6/ 2. Incremental condition estimation (ICE)

We have

1mMax
s,c,c2+s2=1

/
2
( ) R v a ( ) R v RT 0 SY
S C = X S &
v 0 ~ 5,¢,c24s2=1 i 0 ~ vl C
2 T,\2 T
— max (3, C) OmaztcE(R)” + (y7v)° y(v7y)) (s .
s,c,c2+s2=1 ’Y(UTy) ’72 C

The maximum is obtained with the normalized eigenvector corresponding
to the maximum eigenvalue \,,..(Brcg) of

B _ <0maxICE(R)2 + (yTU)2 fy(IUTy)>
ICE = .
Y(v'y) o

).

>

We denote the normalized eigenvector by <

(P
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4’6/ 2. Incremental condition estimation (ICE)

/

Then with 7 = (éy, é) we define the approximate maximal singular
value of the extended matrix as

UmaxICE(R/) = H@TR/H ~ Omax(R/)'

Similarly, if for some y with unit norm,

OmintcE () = |7 Rl = 0in(R) = min 27 ],

then ICE uses the minimal eigenvalue \,,,;,(Brcopg) of
B o UminICE(R)2 + (yTU)2 ’Y(UTCU)
ICE - 2
v (0" y) ot

The corresponding eigenvector of B yields the new vector §’ and

Omintor(R) = |77 R|| = omin(R).
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/%’6/ 2. Incremental condition estimation (ICE)

/

Experiment:

e We generate 50 random matrices A of dimension 100 with the Matlab
command A = randn(100, 100)

e We compute the Cholesky decompositions LL? of the 50 symmetric
positive definite matrices AA”

« We compute the estimations o,,..rce(L?) and opinrcr (L)

 In the following graph we display the quality of the estimations through
the number

(GmaxICE(LT) ) 2

Ominice(LT)

k(AAT)

where x(AA?T) is the true condition number. Note that we always have

2
OmaxICE(LT)> T
< k(AA").
(UminICE(LT) - ( )
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4’6/ 2. Incremental condition estimation (ICE)

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.
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4’6/ 2. Incremental condition estimation (ICE)

/

Now assume we have to our disposal not only the Cholesky

decomposition of AAT,
AAT = LIt

but also the inverse Cholesky factors as is the case in BIF, i.e. we have
(AANY =L,

Then we can run ICE on L—1 and use the additional estimations

1 1

~ Omin LT ~ Omax LT .
7 ( )’ UminICE(L_T) 7 ( )

OmaxICE(L_T)

In the following graph we take the best of both estimations, we display

N 2
maX(O'ma$[CE(LT),UminICE(L T) 1)
min(o-minICE(LT)?Gma$ICE(L_T)_1)

k(AAT)
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4’6/ 2. Incremental condition estimation (ICE)

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.
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4’6/ 2. Incremental condition estimation (ICE)

o 10 20 30 40 50

Quality of the estimator ICE without (black) and with exploiting (green) the
iInverse for 50 random s.p.d. matrices of dimension 100.
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4’6/ 3. Incremental norm estimation (INE)

/

An alternative technique called incremental norm estimation (INE) was
proposed in [Duff, Vomel - 2002]:

Let R be upper triangular with given approximate maximal singular value

omazINE(R) and corresponding approximate right singular vector z,
|z]| =1,

OmazINE(R) = || R2|| & 0paa(R) = ||Hl||a—X1 | Raz|.

INE approximates the maximal singular value of the extended matrix
o R v
0 v

., over all s, ¢ satisfying ¢* + s* = 1.

by maximizing

() ()
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4’6/ 3. Incremental norm estimation (INE)

/

2

R v Sz Sz RT 0 R v Sz
=  max

0 ~ C s,c,c?+s?=1 \ ¢ vl Y 0 v C

. ( ) TRTR,  2zTRTy S
= X s cC :
s,c,c2+s52=1 ZTRT’U UTU + ’}/2 C

The maximum is obtained for the normalized eigenvector corresponding
to the maximum eigenvalue \,,..(Brng) Of

_ (2'RTRz 'R
BINE = TRy vTo4++2)

).
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We have

1mMax
s,c,c2+s52=1

>

(P

We denote the normalized eigenvector by <



4’6/ 3. Incremental norm estimation (INE)

/

T
Then with z = (éz, c) we define the approximate maximal singular
value of the extended matrix as

OmariNE(R') = || R'Z|| & Omas (R).

Similarly, if for a unit vector z,

|Rz|| = omin(R) = ||H|l|in1 |Rx||,
xl|l=

then INE uses the minimal eigenvalue \,,,;,,(B;ng) of
3 B PRTRz  2'RTw
INE TRTy vTvo+42)
The corresponding eigenvector of B;y g Yields the new vector Z and

OminINE(R') = ||R'Z|| = omin(R).
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4’6/ 3. Incremental norm estimation (INE)

/

Consider the same experiment as before.

We can combine the estimations from ICE and INE to improve the
estimator.

In the following graph we take the best of both estimations and display

2
maX(O'maggICE(LT)70'maa:INE(LT))
min(ominice(LT),0miniNng(LT))

k(AAT)
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4’6/ 3. Incremental norm estimation (INE)

Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.
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4’6/ 3. Incremental norm estimation (INE)

0.25
0.2
0.15

Quality of the estimator ICE (black) and of ICE combined with INE (blue)
for 50 random s.p.d. matrices of dimension 100.
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4’6/ 3. Incremental norm estimation (INE)

/

Finally, if we assume we have to our disposal the inverse factors, we can
combine ICE with INE for both L and L=7.

In the following graph we take the best of four estimations and display

_ _ _ _ 2
maX(O-mamICE(LT)ao-ma,mINE(LT)aaminICE(L T) 1a0minINE(L T) 1)
min(aminICE(LT)ao-minINE(LT)aUmamICE(L_T)_l aamamINE(L_T)_l)

k(AAT)
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4’6/ 3. Incremental norm estimation (INE)
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Quality of the estimator ICE for 50 random s.p.d. matrices of dimension
100.
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4’6/ 3. Incremental norm estimation (INE)
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Quality of the estimator ICE (black) and of ICE combined with INE and
exploiting the inverse (red) for 50 random s.p.d. matrices of dimension
100.
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/%6/ 4. Superiority of INE for 0,4,

/

Why this improvement ?

In general, both ICE and INE give a satisfactory approximation of
omaz(A), though INE tends to be better.

The problem is to approximate o,,,;,,(A), for ICE as well as for INE.

The trick is to translate to the problem of finding the maximal singular
value o,,..(A~1) of A=, which is in general done better with INE than

with ICE.

This has an important impact on the estimate because ¢,,;,(A) IS

typically small and appears in the denominator of ‘;ijéﬁ)),

We see that the main reason for the improvement is that INE tends to give

a

better estimate of maximal singular values. And why is that ?
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/%’6/ 4. Superiority of INE for 0,4,

/

Note: INE does not always give a better estimate of the maximal singular
value. But we have the following rather technical result.

Theorem. Consider condition estimation of the matrix

o R v
0 ~ ’
where both ICE and INE start with the same approximation of ¢,,,4. (R)
denoted by é. Let y, ||y|| = 1 be the approximate singular vector for ICE,
0 = ||yTRH N Omaz (1),

and let z, ||z]| = 1 be the approximate singular vector for INE,

0 = || Rz]| & omax(R).
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/%’6/ 4. Superiority of INE for 0,4,

/

Theorem (continued). Then we have superiority of INE,

OmaxINE(R/) Z OmaxICE(R/)a

(vI'R2)? > & (vly)* + % (v'v — (v"y)?) (oz — \/042 + 452(va)2) :

where o = §% — 7% — (vly)2.

Hence if 62 (vTy)? + 2 (vTv — (vTy)?) (a — /a2 + 4(52(va)2> < 0, then
INE is unconditionally superior to ICE (i.e. regardless of the approximate
singular vector z). Let us use the notation

p= T + 5 (00— (07) (o fa? £ 13207y )
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/%’6/ 4. Superiority of INE for 0,4,

/

To conclude we demonstrate the previous theorem.

e Assume that at some stage of an incremental condition estimation
process we have 0,,..7c5(R) = 0marine(R) = 1.

e Consider possible new columns v of R’ that have unit norm, i.e.

vy =1.

e Then (v'y)? < 1. The x-axes of the following figures represent the
possible values of (v!y)? < 1.

o The y-axes represent values of 72, i.e. the square of the new diagonal
entry.

e The superiority criterion for INE expressed by the value of p is given by
the z-axes.
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/ 4. Superiority of INE for 0,4,
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Value of p in dependence of (v1y)? (x-axis) and v? (y-axis) with ||v||? = 1.
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4'6/ 4. Superiority of INE for 0,4,

Value of p in dependence of (v!y)? (x-axis) and 2 (y-axis) with ||v||? = 10.
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4’6/ 5. Conclusion and future work

/

o Exploiting the presence of inverse factors combined with INE gives a
significant improvement of incremental condition estimation.

e This may be an important advantage of methods like BIF where inverse
triangular factors are just a by-product of the factorization.

e We did not consider sparse Cholesky factors, which ask for modified
ICE [Bischof, Pierce, Lewis - 1990].

e We did not consider exploiting the inverse in estimation of the 1-norm
and other non-Euclidean condition number.
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