
Preservers of Eigenvalue Inclusion Sets

Virginia Forstall, Aaron Herman, Chi-Kwong Li
Nung-Sing Sze, Vincent Yannello

May 24, 2010



Preserver problems on matrices

Matrix preserver problems characterize maps on matrices
leaving invariant a function, subset, or relation.

Given a function f on a matrix set M with a binary operator
A ◦B, maps Φ : M 7→M have been studied that satisfy
f(Φ(A) ◦ Φ(B)) = f(A ◦B) for all A,B ∈M .
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Preservers of the spectrum of matrix prodcuts

Many applications require knowledge of the eigenvalues of
products or powers of matrices.

For example, several applications in wavelet analysis require
the joint spectral radius, which is the maximum eigenvalue of
matrix products over a set of matrices [3].

Researchers considered mappings that leave the spectrum of
matrix products invariant.

It has been shown that a map, Φ : Mn 7→Mn, such that
Sp(Φ(A)Φ(B)) = Sp(AB) has the form

A 7→ ±S−1AS or A 7→ ±S−1AtS

where Sp(A) is the spectrum of A and S is an invertible
matrix [1].
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Eigenvalue Inclusion Sets

In applications, it may not be easy to determine the
eigenvalues precisely due to numerical error, insufficient
information, size of matrices, etc.

Even without the exact eigenvalues, we have a lot of
information about the matrix by knowing its eigenvalue
inclusion set.



Preservers of eigenvalue inclusion sets of matrix products

We consider maps that preserve eigenvalue containment
regions for products of matrices.

Let S(X) be an eigenvalue inclusion set of the matrix
X ∈Mn. Consider a preserver, Φ : Mn 7→Mn, of the
eigenvalue inclusion set of matrix products such that
S(Φ(A)Φ(B)) = S(AB) for all A,B ∈Mn.

We characterize such maps when S(A) is the Gershgorin,
Brauer, and Ostrowski region of A ∈Mn.
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Gershgorin region

The Gershgorin region is the most common eigenvalue
inclusion set.

A Gershgorin disc is defined by

Gi(A) = {µ ∈ C : |µ− aii| ≤ Ri}

where Ri is the deleted row sum.

The Gershgorin region is the union of these disks and includes
all the eigenvalues of A.
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Ostrowski’s region

Definition

For ε ∈ [0, 1], define the Ostrowski region of A ∈Mn such that
Oε(A) = ∪nj=1Oε,j , where

Oε,j = {µ ∈ C|µ− ajj | ≤ RεjC1−ε
j },

and Rj =
∑

k 6=j |ajk| and Cj =
∑

k 6=j |akj |.

The Ostrowski region reduces to the Gershgorin region when
ε = 1 and the Gershgorin region of At when ε = 0.



Ostrowski’s region

Definition

For ε ∈ [0, 1], define the Ostrowski region of A ∈Mn such that
Oε(A) = ∪nj=1Oε,j , where

Oε,j = {µ ∈ C|µ− ajj | ≤ RεjC1−ε
j },

and Rj =
∑

k 6=j |ajk| and Cj =
∑

k 6=j |akj |.

The Ostrowski region reduces to the Gershgorin region when
ε = 1 and the Gershgorin region of At when ε = 0.



Example:

Consider a matrix A =

1 0 1
0 −i 1
0 0 i


The Ostrowski region is smaller than the Gershgorin region
when ε ∈ (0, 1).

Figure: G(A) Figure: Oε(A) for ε ∈ (0, 1)



Preservers of Ostrowski regions

For the Ostrowski region, we have the following.

Theorem

A mapping Φ : Mn 7→Mn satisfies

Oε(Φ(A)Φ(B)) = Oε(AB),∀A,B ∈Mn

if and only if Φ has the form

A 7→ ±(DP )A(DP )−1

where P is a permutation matrix and D is diagonal and invertible.
D is unitary except when (n, ε) = (2, 1/2).



Outline of Proof

It is easy to check that a map of this form preserves the
Ostrowski set.

Proving the converse is more involved.

The key step is to show that there exists P such that

PΦ(Eij)P
t = νijEij

with νij 6= 0 where Eij is the standard basis for Mn.
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Useful ideas

Considering Oε(A
2) = Oε(Φ(A)2) for certain A ∈Mn yields

information about the structure of Φ(A)2.

Taking A with n distinct eigenvalues and an eigenvalue
inclusion region of n degenerate discs, we can translate this
information about Φ(A)2 to the structure Φ(A) using a
known theorem.
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Useful results

Theorem

For A ∈Mn with n distinct eigenvalues, B ∈Mn commutes with
A if and only if there is a (complex) polynomial of degree at most
n− 1 such that B = p(A).

Specifically, a diagonal matrix (Φ(A))2 ∈Mn with n distinct
eigenvalues commutes with Φ(A), so Φ(A) can be written as
a polynomial of Φ(A)2.

So if we take A such that O(A2) has n degenerate disks, we
conclude that Φ(A) a particular form (either diagonal, upper
triangular etc.).
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Brauer’s region

Definition

The Brauer set of A ∈Mn is C(1) = ∪1≤i<j≤nCij(A), where

Cij(A) = {µ ∈ C : |(µ− aii)(µ− ajj)| ≤ RiRj}.



Preservers of Brauer’s region

We have a similar theorem for this containment region.

Theorem

A mapping Φ : Mn 7→Mn satisfies

C(Φ(A)Φ(B)) = C(AB), ∀A,B ∈Mn

if and only if Φ has the form

A 7→ ±(DP )A(DP )−1

where P is a permutation matrix and D is diagonal and invertible.
The matrix D is unitary for n ≥ 3.

The proof of this theorem makes use of the theorem about
commuting matrices to show that Φ : Mn 7→Mn maps
Eij 7→ νijErs for nonzero νij .
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Conclusion

We have characterized maps that preserve eigenvalue inclusion
sets such that A 7→ ±(DP )A(DP )−1.

Next we would like to characterize maps that satisfy
S(Φ(A) ◦ Φ(B)) = S(A ◦B) for other eigenvalue inclusion
sets S and other types of binary operation ◦ on matrices such
as the Jordan product: A ◦B = AB +BA, or the Lie
product: A ◦B = AB −BA.
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