A numerical range for rectangular matrices and matrix polynomials

Panayiotis J. Psarrakos

Department of Mathematics

National Technical University of Athens

E-mail: ppsarr@math.ntua.gr

(From joint works with Christos Chorianopoulos and Sotirios Karanasios)

DEFINITIONS

The **(standard) numerical range** of a square matrix $A \in \mathbb{C}^{n \times n}$ is defined by

$$F(A) = \left\{ x^* A x \in \mathbb{C} : x \in \mathbb{C}^n, \|x\|_2 = \sqrt{x^* x} = 1 \right\}.$$

F(A) is a **compact** and **convex** subset of \mathbb{C} that contains the eigenvalues of A and has interesting geometric properties.

Since late 1920's (Toeplitz-Hausdorff Theorem), hundreds of papers have been published on the topic, all of them for square matrices.

Bonsall and Duncan (1973) observed that

$$F(A) = \{ \mu \in \mathbb{C} : \|A - \lambda I_n\|_2 \ge |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C} \}$$

$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}(\lambda, \|A - \lambda I_n\|_2) \quad \text{(closed disks centered at } \lambda \text{)}.$$

For any $A, B \in \mathbb{C}^{n \times m}$ and any matrix norm $\|\cdot\|$, we define the (compact and convex) numerical range of A with respect to B

$$F_{\|\cdot\|}(A;B) = \{\mu \in \mathbb{C} : \|A - \lambda B\| \ge |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C} \}$$
$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}(\lambda, \|A - \lambda B\|).$$

For elements u, v of a normed linear space, u is **Birkhoff-James** orthogonal to $v, u \perp_{BJ} v$, if $||u + \lambda v|| \geq ||u||$, $\forall \lambda \in \mathbb{C}$.

We see that, in general,

$$F_{\|\cdot\|}(A;B) \supseteq \{\mu \in \mathbb{C} : B \perp_{BJ} (A - \mu B)\},$$

and if ||B|| = 1, then

$$F_{\|\cdot\|}(A;B) = \{ \mu \in \mathbb{C} : B \perp_{BJ} (A - \mu B) \}.$$

WHY USING B?

For any $A \in \mathbb{C}^{n \times n}$, $F(A) = \{ \mu \in \mathbb{C} : \|A - \lambda I_n\|_2 \ge |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C} \}.$

In the rectangular case, one may question the use of B instead of $I_{n,m}$.

Without loss of generality, assume that n>m, $A=\left[\begin{array}{c}A_1\\A_2\end{array}\right]$ with

$$A_1 \in \mathbb{C}^{m \times m}$$
 and $A_2 \in \mathbb{C}^{(n-m) \times m}$, and $I_{n,m} = \begin{bmatrix} I_m \\ 0 \end{bmatrix}$.

Theorem 1 $F_{\|\cdot\|_2}(A; I_{n,m}) = F(A_1).$

BASIC PROPERTIES

We can estimate $F_{\|\cdot\|}(A;B) = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}(\lambda,\|A-\lambda B\|)$ by drawing circles $\partial \mathcal{D}(\lambda,\|A-\lambda B\|)$. To confirm the effectiveness of this procedure, let

$$A=\left[\begin{array}{ccc|c}1&2&0\\0&2&0\\0&0&\mathrm{i}\end{array}\right] \text{ and } B=I_3, \text{ and recall that } F(A)=F_{\|\cdot\|_2}(A;I_3).$$

Proposition 2 $F_{\|\cdot\|}(A;B) \neq \emptyset \Leftrightarrow \|B\| \geq 1.$

Proposition 3 If $a, b \in \mathbb{C}$

$$\Rightarrow F_{\|\cdot\|}(bB;B) = \{b\} \text{ and } F_{\|\cdot\|}(aA+bB;B) = aF_{\|\cdot\|}(A;B) + b.$$

Proposition 4 If $\|\cdot\|$ is unitarily invariant, $U\in\mathbb{C}^{n\times n}$ and $V\in\mathbb{C}^{m\times m}$ are unitary, and \hat{A},\hat{B} are associated submatrices of A,B

$$\Rightarrow$$
 $F_{\|\cdot\|}(UAV;UBV)=F_{\|\cdot\|}(A;B)$ and $F_{\|\cdot\|}(\hat{A};\hat{B})\subseteq F_{\|\cdot\|}(A;B).$

$$\text{For } A = \left[\begin{array}{ccccc} 5+\mathrm{i} & 0.2 & 0 & -0.1 \\ 0 & 1-\mathrm{i} \, 5 & -\mathrm{i} \, 0.1 & 0 \\ 0 & 0 & 0.1 & 0 \end{array} \right] \text{ and } B = \left[\begin{array}{ccccc} 1.1 & 0 & 0 & 0 \\ 0 & 1.2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right],$$

 $F_{\|\cdot\|_1}(A;B)$ and $F_{\|\cdot\|_1}(\mathrm{i}A-4B;B)$ in the left and right parts of the figure confirm the second part of Proposition 3.

Proposition 5 If ||B|| > 1 and $\mu_0 \in \vartheta F_{\|\cdot\|}(A;B)$,

 $\Rightarrow \exists \lambda_0 \in \mathbb{C} \text{ such that } ||A - \lambda_0 B|| = |\mu_0 - \lambda_0|.$

Corollary 6 If $||B|| > 1 \Rightarrow \partial F_{\|\cdot\|}(A;B)$ has no flat portions.

Proposition 7 (Resolvent Estimate)

If n=m, B is invertible and $||B^{-1}|| \leq 1$

$$\Rightarrow d(\xi, F_{\|\cdot\|}(A; B)) \le \frac{1}{\|(A - \xi B)^{-1}\|}, \quad \forall \ \xi \notin F_{\|\cdot\|}(A; B).$$

Proposition 8 If $\|\cdot\|$ is induced by the inner product $\langle\cdot,\cdot\rangle$

$$\Rightarrow F_{\|\cdot\|}(A;B) = \mathcal{D}\left(\frac{\langle A,B\rangle}{\|B\|^2}, \|A - \frac{\langle A,B\rangle}{\|B\|^2}B\|\frac{\sqrt{\|B\|^2 - 1}}{\|B\|}\right).$$

Note that if $\|\cdot\|$ is induced by the inner product $\langle\cdot,\cdot\rangle$ and $\|B\|=1$ $\Rightarrow F_{\|\cdot\|}(A;B)=\{\langle A,B\rangle\}$, i.e., it is a singleton, although A is not necessarily a scalar multiple of B.

EIGENVALUES

Let $A, B \in \mathbb{C}^{n \times m}$ with $n \geq m$, and $\|\cdot\|$ be induced by a vector norm.

A $\mu_0 \in \mathbb{C}$ is said to be an **eigenvalue of** A with respect to B if $(A - \mu_0 B) x_0 = 0$ for some $0 \neq x_0 \in \mathbb{C}^m$ (the **eigenvector**).

Proposition 9 If μ_0 is an eigenvalue of A with respect to B, with a unit eigenvector $x_0 \in \mathbb{C}^m$ such that $||Bx_0|| \geq 1 \implies \mu_0 \in F_{\|\cdot\|}(A;B)$.

MATRIX POLYNOMIALS

Consider an $n \times m$ matrix polynomial (m.p.)

$$P(z) = A_l z^l + A_{l-1} z^{l-1} + \dots + A_1 z + A_0,$$

where $z \in \mathbb{C}$ and $A_j \in \mathbb{C}^{n \times m}$ $(j = 0, 1, \dots, l)$ with $A_l \neq 0$.

If $n \ge m$, then a $\mu_0 \in \mathbb{C}$ is an **eigenvalue** of P(z) if $P(\mu_0)x_0 = 0$ for some $0 \ne x_0 \in \mathbb{C}^m$ (the **eigenvector**).

For n=m, the **(standard) numerical range** of m.p. P(z) is

$$W(P(z)) = \{ \mu \in \mathbb{C} : x^*P(\mu)x = 0, x \in \mathbb{C}^n, x \neq 0 \}$$
$$= \{ \mu \in \mathbb{C} : 0 \in F(P(\mu)) \}.$$

We define the numerical range of P(z) with respect to B

$$W_{\|\cdot\|}(P(z);B) = \left\{ \mu \in \mathbb{C} : 0 \in F_{\|\cdot\|}(P(\mu);B) \right\}$$
$$= \left\{ \mu \in \mathbb{C} : \|P(\mu) - \lambda B\| \ge |\lambda|, \, \forall \, \lambda \in \mathbb{C} \right\}.$$

The closeness of $W_{\|\cdot\|}(P(z);B)$ follows from the continuity of norms.

If
$$P(z) = Bz - A \implies W_{\|\cdot\|}(Bz - A; B) = F_{\|\cdot\|}(A; B)$$
.

The ranges
$$W_{\|\cdot\|_F}(P(z);B)$$
 and $W_{\|\cdot\|_F}(R(z);B)$ for $B=\begin{bmatrix} 0.9 & 0 & 0 \\ 0 & 0.7 & 0 \end{bmatrix}$,

$$P(z) = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1.6 & 0 \end{bmatrix} z^2 + \begin{bmatrix} i & 1 & -1 \\ 0 & 2 & i \end{bmatrix} z + \begin{bmatrix} -4 & 0 & 0 \\ 0 & -5 & 0 \end{bmatrix}$$
 and
$$R(z) = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -5 & 0 \end{bmatrix} z^2 + \begin{bmatrix} i & 1 & -1 \\ 0 & 2 & i \end{bmatrix} z + \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1.6 & 0 \end{bmatrix}.$$

BASIC PROPERTIES

Proposition 10 $W_{\|\cdot\|}(P(z);B) \neq \emptyset \Leftrightarrow \|B\| \geq 1.$

Proposition 11 If
$$R(z) = A_0 z^l + \cdots + A_{l-1} z + A_l = z^l P(z^{-1})$$

$$\Rightarrow W_{\|\cdot\|}(R(z);B)\setminus\{0\} = \{z^{-1} : z \in W_{\|\cdot\|}(P(z);B)\setminus\{0\}\}.$$

Proposition 12 If norm $\|\cdot\|$ is induced by a vector norm, $n \ge m$, and μ_0 is an eigenvalue of P(z) with an associated unit eigenvector $x_0 \in \mathbb{C}^n$ such that $\|Bx_0\| \ge 1 \implies \mu_0 \in W_{\|\cdot\|}(P(z); B)$.

Theorem 13 (i) If $W_{\|\cdot\|}(P(z);B)$ is unbounded $\Rightarrow 0 \in F_{\|\cdot\|}(A_l;B)$.

(ii) If $0 \in F_{\|\cdot\|}(A_l; B)$, 0 is not an isolated point of $W_{\|\cdot\|}(R(z); B)$ $\Rightarrow W_{\|\cdot\|}(P(z); B)$ is unbounded.

Theorem 14 (i) If $\mu_0 \in \partial W_{\|\cdot\|}(P(z); B) \implies 0 \in \partial F_{\|\cdot\|}(P(\mu_0); B)$.

(ii) If
$$0 \in \partial F_{\|\cdot\|}(P(\mu_0); B)$$
, $P(\mu_0) \neq 0$, $0 \notin F_{\|\cdot\|}(P'(\mu_0); B)$, $\|B\| > 1$
 $\Rightarrow \mu_0 \in \partial W_{\|\cdot\|}(P(z); B)$.

Proposition 15 If ||B|| > 1, and $\mu \in \mathbb{C}$ such that $P(\mu) = 0$ and $0 \notin F_{\|\cdot\|}(P'(\mu); B) \Rightarrow \mu$ is an isolated point of $W_{\|\cdot\|}(P(z); B)$.

Proposition 16 If norm $\|\cdot\|$ is induced by the inner product $\langle\cdot,\cdot\rangle$

$$\Rightarrow \quad W_{\|\cdot\|}(P(z);B) = \left\{ \mu \in \mathbb{C} : |\langle P(\mu),B\rangle| \leq \|P(\mu)\|\sqrt{\|B\|^2 - 1} \right\}.$$

Corollary 17 If norm $\|\cdot\|$ is induced by an inner product

 \Rightarrow the boundary of $W_{\|\cdot\|}(P(z);B)$ lies on an algebraic curve.

<u>REFERENCES</u>

- F.F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, 1973.
- Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of rectangular matrices, *Linear and Multilinear Algebra*, **57** (2009).
- Ch. Chorianopoulos and P. Psarrakos, A numerical range of rectangular matrices and matrix polynomials, *in preparation* (2010).
- I. Gohberg, P. Lancaster and L. Rodman, *Matrix Polynomials*, Academic Press, 1982.
- R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, 1991.
- R.C. James, Orthogonality and linear functionals in normed linear spaces, *Trans. Amer. Math. Soc.*, **61** (1947).
- P. Lancaster and P. Psarrakos, Normal and seminormal eigenvalues of analytic matrix functions, *Integral Equations Operator Theory*, **41** (2001).
- C.-K. Li and L. Rodman, Numerical range of matrix polynomials, *SIAM J. Matrix Anal. Appl.*, **15** (1994).
- J. Maroulas and P. Psarrakos, The boundary of numerical range of matrix polynomials, *Linear Algebra Appl.*, **267** (1997).