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DEFINITIONS

The (standard) numerical range of a square matrix A € C"*" is
defined by

F(A) = {CU*AZU cC:2eC” |z|=Varx = 1} .

F(A) is a compact and convex subset of C that contains the
eigenvalues of A and has interesting geometric properties.

Since late 1920's (Toeplitz-Hausdorff Theorem), hundreds of papers
have been published on the topic, all of them for square matrices.
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Bonsall and Duncan (1973) observed that

F(A) = {peC:||A=AL|,>|p—A,¥AeC)

— ﬂ D (N ||A— Al,||l,) (closed disks centered at A ).
AeC

For any A, B € C™*™ and any matrix norm || - ||, we define the
(compact and convex) numerical range of A with respect to B

Fi(A;B) = {peC:[[A=AB| = |p— A, VA e C}
= (1D A= AB]).

AeC
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For elements u,v of a normed linear space, u is Birkhoff-James

> |lull, ¥ XeC.

orthogonal to v, u Lgyv, if |[u+ A\v]

We see that, in general,

Fi(A;B) 2 {p€C: B Lp; (A—uB)},
and if ||B|| =1, then

Fi(A4;B) = {uecC:B lg; (A—uB)}.
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WHY USING B?

Forany Ae C" F(A)={peC:||A-A,]|,>|p—A,VXeC}.

In the rectangular case, one may question the use of B instead of I, ,,.

Without loss of generality, assume that n > m, A = with

I,

A; e C™™ and A, € C(”_m)xm7 and Iym =
0

Theorem 1 FH.HQ(A; [n,m) - F(Al).
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BASIC PROPERTIES

We can estimate F|

0D (), |

A

AeC

(A;B) = () D(\,||A— AB||) by drawing circles

|A — ABJ|). To confirm the effectiveness of this procedure, let

1
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0

and

B = I3, and recall that F(A)
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Proposition 2 FH.H(A; B)#£(0 < |B]|>1.

Proposition 3 If a, b € C
— FH.H([?B; B) = {b} and FH.H(aA +bB; B) = aFH.H(A; B) +b.

Proposition 4 If || - || is unitarily invariant, U € C"*" and V € C™*™
are unitary, and A B are associated submatrices of A, B

= F(UAV;UBV) = Fy(A; B) and Fy(A;B) C Fj(A; B).
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the figure confirm the second part of Proposition 3.
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Proposition 5 If HBH > 1 and o € 19FH.H(A; B),
= d Ao € C such that ||A — X\B|| = g — Mol.

Corollary 6 If |B|| >1 = 0F)(A; B) has no flat portions.

Proposition 7 (Resolvent Estimate)
If n=m, B isinvertible and ||B7}|| <1

1
(A=¢B)7H|

= (&, F)(A4;B)) < ] V& & Fy(4; B).
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Proposition 8 If || - || is induced by the inner product (-,-)
(A, B) H VIBE=1
= Fy.(A;B) =D A — .
: ( B IIBH2 |B]
Note that if || - || is induced by the inner product (-,-) and ||B| =1

= F(A4;B) ={(A,B)}, i.e., it is a singleton, although A is not
necessarily a scalar multiple of B.
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EIGENVALUES

Let A, B € C™™ with n > m, and || - || be induced by a vector norm.

A 1y € C is said to be an eigenvalue of A with respect to B if
(A — poB)xg =0 for some 0 # xy € C™ (the eigenvector).

Proposition 9 If 1 is an eigenvalue of A with respect to B, with a
unit eigenvector o € C™ such that ||Bxo|| > 1 = o € Fj(4; B).
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MATRIX POLYNOMIALS

Consider an n X m matrix polynomial (m.p.)
P(Z) — Alzl + Al_lzl_l + -+ Alz + Ao,
where 2 € C and A, e C™™ (j =0,1,...,1) with A; #0.

If n>m, then a yy € C is an eigenvalue of P(z) if P(ug)ze =10
for some 0 # xy € C™ (the eigenvector).

For n = m, the (standard) numerical range of m.p. P(z) is

W(P(z)) = {peC:2"P(p)r=0,x€C", x+#0}
= {neC:0eF(P(n)}.

PANAYIOTIS PSARRAKOS — DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVERSITY OF ATHENS 12



Applied Linear Algebra — in honor of Hans Schneider
Novi Sad, May 2010

We define the numerical range of P(z) with respect to B

Wi (P(z); B) = {peC:0eF(P(u);B)}
_ {ueC:||Pu)—AB| > |\, ¥AeC)

The closeness of W) (P(2); B) follows from the continuity of norms.

|f P(Z) =Bz—A = I/VH.H(BZ — A; B) - FH.H(A; B).
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BASIC PROPERTIES

Proposition 10 W (P(z);B)#0 <« |B] > 1.

Proposition 11 If R(z) = Agz' + -+ A1z + A = le(z—l)

= W (R(2); B)\{0} = {z7" : 2 € W (P(2); B)\{0}} .

Proposition 12 If norm || - || is induced by a vector norm, n > m,
and fio is an eigenvalue of P(z) with an associated unit eigenvector
ro € C" such that ||Bzo|| >1 = po € W (P(2); B).
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Theorem 13 (i) If W) (P(2); B) is unbounded = 0 € Fj (A; B).

(ii) If 0 € Fj(A;; B), Ois not an isolated point of W (R(z); B)
= W) (P(2); B) is unbounded.

Theorem 14 (I) If 1o € 8W||.||(P(z);B) = 0c 5’F||.||(P(,LLO);B).

(ii) If 0 € OF) ) (P(ro); B), P(po) # 0, 0 ¢ Fjy(P'(o); B),
=  Uo € 5’VVH.H(P(Z);B).

Bl >1
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Proposition 15 If ||B|| > 1, and pu € C such that P(u) =0 and
0¢ Fy(P'(r); B) = p is an isolated point of W (P(2);B).

Proposition 16 If norm || - || is induced by the inner product (-, -)

= Wi(P(2); B) = {u e C: [(P(w), B < | P(u)|V/TBIE 1}

Corollary 17 If norm || - || is induced by an inner product

= the boundary of W) (P(2); B) lies on an algebraic curve.
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