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1.1 Example Let N ≥ 1 and

xk+N = a1xk + a2xk+1 + ... + aNxk+N−1, k = 0, 1, ...,(1.1)

where a1, ..., aN are arbitrary real numbers.

Question 1: When does the above difference equation possess a
strictly increasing solution?
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1.2 Answer Let N ≥ 1 and

xk+N = a1xk + a2xk+1 + ... + aNxk+N−1, k = 0, 1, ...,(1.2)

where a1, ..., aN are arbitrary real numbers. A strictly monotone
solution of the given difference equation (5.4) exists if and only if
the characteristic polynomial p of (5.4) possesses either a positive
root µ 6= 1 or µ = 1 is a root of p whose multiplicity is at least two.
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Question 2: Who can be interested in strictly monotone solutions
to difference equations shown on the previous page?
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Bobok J. On entropy of patterns given by interval maps. Funda-
menta Mathematicae 162(1999), 1-36.

Bobok J., Kuchta M. X-minimal patterns and generalization of Sharkovskii’s
Theorem. Fundamenta Mathematicae 156(1998), 33-66.
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Concepts utilized in the field of Combinatorial Discrete Dynamical
Systems:

Let P = {1, ..., n} ⊂ R and (P, φ), φ : P → P

Interval [j, j + 1], j = 1, ..., n− 1, is called P -basic

P -linear map (or relative map) denoted as fP is a continuous map
of the convex(P ) = [1, n] into itself such that

fP |P = φ

fP |J is affine for any interval J ⊂ convex(P ) for which J ∩ P = ∅

Topological entropy
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Topological entropy of relative maps of permutations of P

Matrix A = A(P, φ) is the (n− 1)× (n− 1) matrix defined as follows:

AJK =



1 if K ⊂ fP (J)

0 otherwise

The entropy is defined as h((P, φ)) = log r(A), where r(A) is the spec-
tral radius of A.

Classification of cyclic permutations: let (P, φ) possess a unique fixed
point c

PL, PR denote the left and right part of P with respect to c respectively

PG = {x ∈ P : (x− c)(φ(x)− c) > 0} , PB = P\PG
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A switch is a P -basic interval with endpoints from different sets PL
and PR

A height of point x ∈ P denoted by H(x) is the number of switches
between x and φ2(x)

Cyclic permutation (P, φ) is green if PR ⊂ PB, φ is increasing on
PG 6= ∅ and decreasing on PB

Complexity denoted by C(P ) is the maximum of heights of the points
from PL ∩ PB.
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2.1 Theorem [1] Denoting GN = {(P, φ) : C(P ) ≤ 2N} we have
that for (P, φ) ∈ GN

h(P, φ) ∈ [
1

2
log C(P ), log α(N)],

and
sup {h(P, φ) ∈ GN} = log α(N),

where α(N) is a positive root of the polynomial equation

1

α2

α + 1

α− 1


N

= NN

√
1 + N 2 −N

(1 +
√

1 + N 2)N
,

and simultaneously, it is the least positive value for which the difference
equation

ξk+N+1 =
−α + 1

α3 + α2
ξk −

1

α2
ξk+1 +

α− 1

α + 1
ξk+N + 2, k = 0, 1, ...

possesses a strictly monotone solution {ξk}k≥0
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A nonempty closed set K ⊂ E where E is a Banach space with norm
‖.‖ is called a cone if it satisfies

(i) K+K ⊂ K, (ii) aK ⊂ K for a ∈ R+ = [0,+∞) (iii) K∩ (−K) =
{0}
If K is a cone in E we write x ≤ y, x, y ∈ E or equivalently, y ≥ x
whenever (y − x) ∈ K
A cone is called

(iv) generating G if G = K −K is a (norm)-closed subspace of E .

(v) normal if there is a constant δ such that ‖x‖ ≤ δ‖y‖ whenever
0 ≤ x ≤ y.

A bounded linear operator T mapping E into E is called K-positive if
TK ⊂ K.
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F = E + (iE), i2 = −1 complex extension of E
T : E → E T̃ = T + iT complex extension of T

σ(T̃ ) spectrum of T , r(T̃ ) spectral radius of T
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Let µ be an isolated singularity of the resolvent operator R(λ, T̃ ) =
(λI − T̃ )−1 of T̃

R(λ, T̃ ) =
∞∑
k=0

Ak(µ)(λ− µ)k +
∞∑
k=1

Bk(µ)(λ− µ)−k,(3.1)

where Ak−1(µ) and Bk(µ), k = 1, 2, ..., belong to B(F). In particular,

B1(µ) =
1

2πi

∫
{λ: |λ−µ|=ρ0}(λI − T̃ )−1dλ,(3.2)

where {λ: |λ− µ| ≤ ρ0} ∩ σ(T̃ ) = {µ} and

B2
1(µ) = B1(µ).(3.3)
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Furthermore,

Bk+1(µ) = (T̃ − µI)Bk(µ) = Bk(µ)(T̃ − µI), k = 1, 2, ...(3.4)

If there is a positive integer q = q(µ) such that

Bq(µ) 6= Θ, and Bk(µ) = Θ for k > q(µ),

then µ is called a pole of the resolvent operator and q is its multi-
plicity.

The following statement will be useful when proving our main results.

3.1 Theorem [12, Theorem5.8− A] For a closed linear operator
T̃F → F let µ ∈ C be a pole of the resolvent operator R(λ, T̃ )
with a multiplicity q(µ). Then µ is an eigenvalue of the operator
T̃ and the range of the projection B1(µ) equals to the kernel of the
operator (µI − T̃ )q(µ).
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Cone K ⊂ E is essential for a bounded linear operator T : E → E if T
is K-positive and for L = K −K, r(T |L) > 0.

For a sequence x = {xk}k≥0 ⊂ E let J = {xk+1 − xk: k ≥ 0}
and

K(x) = {
n∑
i=1
αivi: n ∈ N , αi ∈ R+, vi ∈ J }.(3.5)

Let T : E → E and x0, w ∈ E . The sequence x = {w + T kx0}k≥0 is
said to be strictly monotone if the set K(x) is a cone essential for the
operator T .
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3.2 Problem Given an operator T ∈ B(E). To find a vector
x0 ∈ E such that the sequence {xk}k≥0 given by

xk+1 = Txk,(3.6)

is strictly monotone.
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3.3 Theorem Krein-Schaefer [4, Theorem 9.2] Suppose that a com-
pletely continuous K-positive operator T satisfies r(T ) > 0 and that
K −K = E. Then r(T ) is an eigenvalue of T with corresponding
eigenvector in K.
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4.1 Theorem Let T ∈ B(E) be completely continuous. The fol-
lowing two statements are equivalent:

(i) There is an x0 such that the sequence {T kx0}k≥0 is strictly mono-
tone.

(ii) The spectrum σ(T ) of T contains an eigenvalue µ > 0 such that
either µ 6= 1 or µ = 1 is a pole of the resolvent operator with
multiplicity q(1) ≥ 2.
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Proof

(i)⇒(ii). Assuming a strictly monotone sequence {T kx0}k≥0 we get
that the set K = K(x) defined in (3.5) is an essential cone for the
operator T . Set L = K −K. Theorem 3.3 implies that r(T |L) ∈
σ(T |L) ⊂ σ(T ) and since r(T |L) > 0 it is an eigenvalue of T with
corresponding eigenvector u in K.

Let r(T |L) = 1 be the only positive element in σ(T ) and let it be
a pole of the resolvent operator with multiplicity q(1) = 1. Then the
operators Bk(1) from the Laurent series (3.1) satisfy

B1(1) 6= Θ, Bk(1) = Θ, k = 2, 3, . . . .(4.1)
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Moreover, by Theorem 3.1 and (3.3), for some x ∈ L,

u = B1(1)x = B2
1(1)x, hence B1(1)u = u.

Since u ∈ K and B1(1) is bounded, a nonnegative integer k must exist
such that xk+1 − xk for which

B1(1)(xk+1 − xk) 6= θ.(4.2)

At the same time by (3.6),(3.4) and (4.1)

B1(1)(xk+1 − xk) = B1(1)(T − I)xk = B2(1)xk = θ,(4.3)

a contradiction. Thus, q(1) ≥ 2.
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(ii)⇒(i). First, let µ ∈ σ(T ), µ > 0 and µ 6= 1. Choose an eigenvector
x0 ∈ E corresponding to µ and consider x = {xk}k≥0 and K = K(x).
By (3.5), either K = {αx0: α ∈ R+} for µ > 1 or K = {−αx0: α ∈
R+} if µ ∈ (0, 1). In any case K 6= θ and clearly it is an essential cone
for the operator T . This proves the first part of our conclusion.
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Second, let the spectrum σ(T ) contain value 1 as a pole of the resolvent
operator (3.1) with multiplicity q(1) ≥ 2. Moreover, let y0 ∈ E be such
thatBs(1)y0 6= θ andBs+1(1)y0 = θ with an appropriate 1 < s ≤ q(1).
Setting x0 = Bs(1)y0 +Bs−1(1)y0 and using (3.4) repeatedly we get for
each k ≥ 0

xk = T kx0 = (k + 1)Bs(1)y0 + Bs−1(1)y0,(4.4)

hence the sequence x = {xk}k≥0 satisfies

K = K(x) = {αBs(1)y0: α ∈ R+}.
Since again by (3.4), TBs(1)y0 = Bs(1)y0, we conclude that K 6= {θ}
is a cone essential for the operator T , i.e., the sequence x = {xk =
T kx0}k≥0 is strictly monotone.
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As an application of our Theorem 4.1 we present the proof of Theorem
2.1.

Proof of Theorem 2.1.

23



Let E = RN ,

T =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . .
0 0 0 . . . 0 1
a1 a2 a3 . . . aN−1 aN


,(4.5)

where a1, ..., aN come from (1.1), and let

Xk =



xk
.
.
.

xk+N−1


.
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The sufficiency directly follows from the formula

xk =
n∑
j=1

mj−1∑
`=0

cj,` k
`µkj ,(4.6)

(the complex coefficients cj,` are uniquely determined by an initial con-
dition for the values x0, . . . , xN−1) where µ1, . . . , µn are all distinct
roots of the characteristic polynomial and mj is a multiplicity of µj.
We thus have

Xk = T kX0 =
n∑
j=1

mj∑
`=1

µkjk
`−1Bj,`X0,(4.7)

where the operators B`, ` = 1, ...,mj denotes appropriate analogs of
the operators introduced in (3.1) and (3.4)
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Then, T is completely continuous and (1.1) is equivalent to

Xk+1 = TXk, k = 0, 1, . . . .(4.8)

Without loss of generality assume that the sequence {xk} is strictly
increasing (the proof for a strictly decreasing sequence is analogous).

Let K = K(X) be defined as in (3.5). Clearly, K is a subcone of the
coneRN

+ ⊂ RN and L = K−K is a closed subspace ofRN . Let k ≥ 1
be fixed. Then

ζ = min


xk+j+1 − xk+j
xk+j − xk+j−1

: j = 0, ..., N − 1

 > 0.(4.9)

We also have the relations

Yk+1 = Xk+1 −Xk = T (Xk −Xk−1))

≥ ζ (Xk −Xk−1)

= ζYk.
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4.2 Proposition [4, Lemma 9.1] Suppose that T : E → E is a K-
positive operator bounded linear operator such that some element
u /∈ −K satisfies

Tu ≥ νu,(4.10)

where ν ≥ 0. Then r(T ) ≥ ν.

Since T is K-positive, we deduce from Proposition 4.2 that r(T |L) ≥
ζ hence by Theorem 3.3, r(T |L) > 0 is an eigenvalue of T |L with
corresponding eigenvector U ∈ K. It shows that the cone K is essential
for T , i.e., the sequence {Xk}k≥0 is strictly monotone due to definition
and the conclusion follows from Theorem 4.1.
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5

The similarity of the theory of ordinary linear differential equations and
linear difference equations with constant coefficients suggests consider-
ing the following problem. In the sequel the symbol x(j)(t) denotes the
jth derivatives of a function x(t).

5.1 Problem Let N ≥ 1, b1, . . . , bN ∈ R. Find y = y(t) such that

y(N)(t) = b1y(t) + b2y
(1)(t) + . . . + bNy

(N−1)(t), t ∈ R(5.1)

and satisfying either

y(s) < y(t) for all t > s ≥ 0(5.2)

or
y(s) > y(t) for all t > s ≥ 0.(5.3)
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5.2 Theorem The following statements are equivalent.

(i) There exists a solution y = y(t) to (5.1) such that (5.2) or (5.3)
holds.

(ii) The characteristic polynomial to (5.1) possesses either a real
root λ 6= 0 or λ = 0 is a root whose multiplicity is at least two.
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Proof Denote λ1, . . . , λn all distinct roots of characteristic polynomial
of (5.1). Obviously, n ≤ N .

Let

Y (t) =



y(t)
y′(t)
.
.
.

y(N−1)(t)



, t ≥ 0, Y (0) =



y(0)
y′(0)
.
.
.

y(N−1)(0)



,

where Y (0) is the vector of initial values,
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From the well known fact

Y (t) = exp{Tt}Y (0) =
n∑
j=1

mj∑
k=1

exp{λjt}
tk−1

(k − 1)!
Bj,kY (0)

we derive that for

Z` = Y

`
q

 =
n∑
j=1

mj∑
k=1

exp

λj
`

q


(
`
q

)k−1

(k − 1)!
Bj,kY (0)

where q is any positive integer and l = 0, 1., ...,
we have

Z` = A`Z0 =
n∑
j=1

mj∑
k=1

µ`j

`
q


k−1 1

(k − 1)!
BjkY (0)

where

A = exp{1

q
T t}, λj = q log µj.

According to Answer 2.1 the required assertion follows.
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2.1 Answer Let N ≥ 1 and

xk+N = a1xk + a2xk+1 + ... + aNxk+N−1, k = 0, 1, ...,(5.4)

where a1, ..., aN are arbitrary real numbers. A strictly monotone solu-
tion of the given difference equation (5.4) exists if and only if the char-
acteristic polynomial p of (5.4) possesses either a positive root µ 6= 1
or µ = 1 is a root of p whose multiplicity is at least two.
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6 Monotone semigroups of operators

The previous generalizations can be extended to some cases of (C0)-
semigroups of linear operators and in particular linear PDE’s. For
the sake of completeness we outline possible approach here. For more
detailed information related to this paragraph - see [3].

By a (C0)-semigroup we mean a one-parameter system T = {T (t)}t≥0

of operators from the space of bounded linear operators B(E) with the
property that

T (s + t)x = T (s)T (t)x, T (0) = I(6.1)

for all s, t ∈ R+ and all x ∈ E . We assume that T (t) is strongly
continuous for t ≥ 0, i.e. for each x ∈ E

lim
h→0

T (t + h)x = T (t)x.(6.2)
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The infinitesimal generator B of T = {T (t)}t≥0 is a closed (generally
unbounded) operator defined by

Bx = lim
h→0+

1

h
(T (h)− I)x(6.3)

whenever the limit exists. The domain D(B) is dense in E . For each
x ∈ D(B) ([3, Theorem 10.3.3]),

d

dt
T (t)x = BT (t)x = T (t)Bx(6.4)

and for x ∈ D(Bn), n ∈ N , it is possible to represent T (t)x by means
of an ”exponential formula” ([3, p. 354])

T (t)x =
n−1∑
k=0

tk

k!
Bkx +

1

(n− 1)!

∫ t
0 (t− τ )n−1T (τ )Bnx dτ.(6.5)

The point and residual spectrum of T = {T (t)}t≥0 come from those
of its generator B.
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6.1 Theorem [3, Theorems 16.7.1-3] (i) Pσ[T (t)] = exp[tPσ(B)],
plus, possibly, the point λ = 0. If µ ∈ Pσ[T (t)] for some fixed t > 0
where µ 6= 0 and if {αn} is the set of roots of exp(tα) = µ then
at least one of the points αn lies in Pσ(B). (ii) If µ ∈ Rσ[T (t)]
for some fixed t > 0 where µ 6= 0, then at least one of the solu-
tions of exp(tα) = µ lies in Rσ(B) and none can lie in Pσ(B).
(iii) exp[tCσ(B)] ⊂ Cσ[T (t)].

A cone K ⊂ E is called essential for a (C0)-semigroup T = {T (t)}t≥0

if each T (t) is K-positive and for L = K −K, T|L is generated by an
operator B such that σ(B) 6= ∅.

For a collection x = {x(t)}0≤t<τ ⊂ E , 0 < τ ≤ ∞, let J (x) =
{ ddtx(t): 0 ≤ t < τ} and let K(x) be given by (3.5).
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Analogously as in the previous we define the following.

6.2 Definition Let T = {T (t)}t≥0 ⊂ B(E) be a (C0)-semigroup
with an infinitesimal generator B, x0 ∈ D(B), w ∈ E. The collec-
tion x = {w + T (t)x0}t≥0 is said to be strictly monotone if the set
K(x) is a normal generating cone essential for the semigroup T .

6.3 Problem Given a closed linear operator B with the domain
D(B) ⊂ E and generating a (C0)-semigroup {T (t)}t≥0 ⊂ B(E). To
find vector x0 ∈ D(B) such that the collection {x(t) = T (t)x0}t≥0

satisfying
d

dt
x(t) = Bx(t), x(0) = x0, t ≥ 0(6.6)

is strictly monotone.
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For the reader’s convenience we present the Krein-Schaefer Theorem
in a form which is applied in our contribution.

6.4 Theorem [5], [10, Proposition 4.1], [11] Let E be a Banach space
generated by a normal cone K. If T ∈ B(E) is K-positive then the
spectral radius r(T ) belongs to the spectrum σ(T ).
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6.5 Definition Let T = {T (t)}t≥0 ⊂ B(E) be a (C0)-semigroup
with an infinitesimal generator B. We say that the infinitesimal
generator B of a (C0)-semigroup T = {T (t)}t≥0 is admissible if

• Cσ(T (t)) = ∅ for each t > 0;

• σ(B) ∩R ⊂ Pσ(B);

• t(σ(B) \ R) ∩ (R× {πni}n ∈ Z) = ∅ for some t > 0;

• and if σ(B)∩R = {0} then 0 is a pole of the resolvent operator
of B.
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6.6 Theorem Concerning Problem 6.3 assume that the operator
B is admissible. Then the following two statements are equivalent.

(i) There is an x0 ∈ D(B) such that the corresponding solution
{x(t)}t≥0 of (6.6) is strictly monotone.

(ii) The spectrum σ(B) contains a real eigenvalue µ. This eigen-
value is either nonzero or 0 is a pole of the resolvent operator
whose multiplicity is at least 2.
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Proof (i)⇒(ii). Let {x(t) = T (t)x0}t≥0, x0 ∈ D(B), be a strictly
monotone solution to (6.6). By our definition, every element of the
semigroup T is K-positive, where K = K(x) is a normal generating
cone due to Definition 6.2. Let L = K−K. Applying Theorem 6.4 we
get that for every t ≥ 0, the spectral radius rt = r(T (t)|L) belongs to
the spectrum σ(T (t)|L). Since B is admissible and K is essential for
T , Theorem 6.1 implies

rt = etzt > 0 for some zt ∈ Pσ(B)and each t ≥ 0.(6.7)

If it were σ(B) ∩ R = ∅ then, again by the admissibility of B, there
would exist a positive t for which (R × {πni}n ∈ Z) ∩ tσ(B) = ∅,
what contradicts (6.7). Thus, the spectrum σ(B) of B has to contain
a real eigenvalue µ.

To finish the proof of this part, let us assume that µ = 0 is the only
real element in σ(B). By our assumption on B, then 0 is a pole (an
isolated singularity) of the resolvent operator of B. We can consider the
Laurent expansion of the resolvent operator about 0 and the operator
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B1(0) given by (3.2). Let the 0 be a pole of multiplicity q(0) = 1.
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Using the expression (3.1) and the operators Bk(0) from (3.4) for the
operator B, we get

Bk(0) = Θ, k = 2, 3, ...;(6.8)

moreover, Theorem 3.1 and (3.3) imply that for some y, x ∈ L, x 6= 0
and u, v ∈ K,

Bx = 0, B1(0)y = x, B2
1(0)y = B1(0)x = x, x = u− v,

hence for some w ∈ {u, v}, B1(0)w 6= 0. On the one hand, since B1(0)
is bounded and Lin{J (x)} is dense in K, there has to exist an element
w0 = d

dtx(t)|t=t0 ∈ J (x) such that

B1(0)w0 6= 0.(6.9)
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On the other hand, from (6.4) and (3.4) we get

B1(0)w0 = B1(0)T (t0)Bx0

= B1(0)BT (t0)x0

= B2(0)T (t0)x0 = 0,

(6.10)

a contradiction. Thus, q(0) ≥ 2.
(ii)⇒(i). For B admissible, let 0 6= µ ∈ Pσ(B)∩R and for 0 6= u ∈
D(B), Bu = µu. Applying formula (6.5) we obtain x(t) = T (t)u =
etµu, hence

J (x) = { d
dt
x(t) = µetµu: t ≥ 0}(6.11)

K(x) = {αµu: α ∈ R+}.

43



The reader can easily verify that K(x) is a normal generating cone
essential for the semigroup T reduced to {αu: α ∈ R}. If µ = 0 and
q = q(0) > 1, we can choose y0 ∈ E and 1 < s ≤ q such that Bsy0 6= 0
and Bs+1y0 = 0. Put x0 = Bsy0 + Bs−1y0. Using (6.5) we get

x(t) = T (t)x0 = (t + 1)Bsy0 + Bs−1y0(6.12)

hence

J (x) =


d

dt
x(t) = Bsy0

 , K(x) = {αBsy0: α ∈ R+}(6.13)

andK(x) is a normal generating cone that is essential for the semigroup
T reduced to {αBsy0: α ∈ R}.
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6.7 Remark Consider a nonhomogeneous version of (6.6), i.e.,
for b 6= θ and a given closed linear operator B the equation

d

dt
x(t) = Bx(t) + b, x(0) = x0, t ≥ 0;(6.14)

let us assume that there exists an element w ∈ D(B) such that

Bw = −b.(6.15)

We can easily verify that {y(t) = w+x(t)}t≥0, with {x(t)}t≥0 being
a solution of the appropriate homogeneous equation (6.6), is a so-
lution of equation (6.14). Moreover, the condition (ii) in Theorem
6.6 is necessary and sufficient for a solution {y(t)}t≥0 of (6.14) to
be strictly monotone due to Definition 6.2.
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7 Concluding remarks

Let us comment on the necessary and sufficient conditions guaranteeing
existence of strictly increasing solutions to linear operators we studied
in the previous sections.

The condition concerned with multiplicity of value one as a point of the
spectrum of the operator under consideration indicate that operators
satisfying this condition must be in a sense ”strange”. In other words,
most of the operators appearing as governing operators in mathematical
modeling in Science, Economics, Engineering etc. cannot be expected
among them.

A rather broad class of operators for which the existence of strictly
increasing solutions cannot be guaranteed is a subclass of operators
T whose some function f (T ) leaves some generating normal cone K
invariant and is irreducible (see [5], [6]).
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As example, we can take N × N matrix T = I − B : B is stochastic
irreducible and such that its spectrum σ(T ) ⊂ {1} ∪ {<λ < 0} ∪ {λ :
λ = µ+ iν, µ, ν real ν 6= 0} [8], [9]. A very special subclass of the class
just described is formed by irreducible p-cyclic stochastic operators.
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[8] Papáček Š. (2005) Photobioreactors for Cultivation of Microal-
gae Under Strong Irradiances Modelling: Simulation and Design.
Ph.D. Thesis, Technical University Liberec
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