(0, 1)-Matrices and Nonnegative Eigenvalues

Richard A. Brualdi

University of Wisconsin-Madison

Joint Work with Steve Kirkland Hamilton Institute, Ireland

Focus of this Talk

- 2 Motivation
- **3** Totally Nonnegative (TNN) Matrices
- **4** Forbidden Submatrix Characterization of (0, 1) TNNs

5 Irreducible Square (0, 1)-TNN Matrices

Dedicated to my friend/co-worker of many years

Last ILAS Meeting

Motivation Totally Nonnegative (TNN) Matrices Forbidden Submatrix Characterization of (0, 1) TNNs Irreducible Square (0, 1)-TNN Matrices

- (0,1)-matrices
- Matrices each of whose eigenvalues is a nonnegative real number.

Motivation Totally Nonnegative (TNN) Matrices Forbidden Submatrix Characterization of (0, 1) TNNs Irreducible Square (0, 1)-TNN Matrices

.

Eigenvalues of A_4 : 0, 0, 2 $\pm \sqrt{2}$ (all nonnegative). Eigenvalues of A_5 : 0, 0, 1, 2 $\pm \sqrt{3}$ (all nonnegative).

Motivation Totally Nonnegative (TNN) Matrices Forbidden Submatrix Characterization of (0, 1) TNNs Irreducible Square (0, 1)-TNN Matrices

Eigenvalues of A_4 : $0, 0, 2 \pm \sqrt{2}$ (all nonnegative). Eigenvalues of A_5 : $0, 0, 1, 2 \pm \sqrt{3}$ (all nonnegative).

Motivation Totally Nonnegative (TNN) Matrices Forbidden Submatrix Characterization of (0, 1) TNNs Irreducible Square (0, 1)-TNN Matrices

Examples cont.

Eigenvalues of A_6 : 0,0,0,1,1,4 (all nonnegative). Eigenvalues of A_7 : 0,0,0,1.3194 \pm 0.49781*i*,0.1185,4.2426 (not even all real).

・ロト・日本・モート モー うへぐ

Motivation Totally Nonnegative (TNN) Matrices Forbidden Submatrix Characterization of (0, 1) TNNs Irreducible Square (0, 1)-TNN Matrices

Examples cont.

Eigenvalues of A_6 : 0, 0, 0, 1, 1, 4 (all nonnegative).

Eigenvalues of A_7 : 0, 0, 0, 1.3194 \pm 0.49781*i*, 0.1185, 4.2426 (not even all real).

Examples cont.

Each of these examples is obtained from the **full lower** (0, 1)-Hessenberg H_n of order n by replacing the **0** in the upper right corner with a 1. For instance,

All the eigenvalues of H_n are nonnegative for $n \ge 2$ but, as shown, the matrices A_n obtained by perturbing the 0 to a 1 have all nonnegative eigenvalues for $n \le 6$ but not for n = 7.

Examples cont.

Each of these examples is obtained from the **full lower** (0, 1)-**Hessenberg** H_n of order n by replacing the **0** in the upper right corner with a 1. For instance,

All the eigenvalues of H_n are nonnegative for $n \ge 2$ but, as shown, the matrices A_n obtained by perturbing the 0 to a 1 have all nonnegative eigenvalues for $n \le 6$ but not for n = 7.

Theorem of McKay, Oggier, Royle, Sloane, Wanless, Wilf (2004)

Theorem: Let A be a (0, 1)-matrix of order n all of whose eigenvalues are **positive**. Then actually all eigenvalues equal 1, and there is a permutation matrix P such that

$$PAP^t = I_n + B$$

where B is a lower triangular matrix with 0s on and above the main diagonal.

The theorem asserts that the digraph of A does not have any cycles of length > 1.

Theorem of McKay, Oggier, Royle, Sloane, Wanless, Wilf (2004)

Theorem: Let A be a (0, 1)-matrix of order n all of whose eigenvalues are **positive**. Then actually all eigenvalues equal 1, and there is a permutation matrix P such that

$$PAP^t = I_n + B$$

where B is a lower triangular matrix with 0s on and above the main diagonal.

The theorem asserts that the digraph of A does not have any cycles of length > 1.

Theorem cont.

Recall that a matrix A of order n is **irreducible** provided that there does **not** exist a permutation matrix P such that

$$PAP^t = \begin{bmatrix} A_1 & O_{r,n-r} \\ \hline A_{21} & A_2 \end{bmatrix}.$$

This is equivalent to the digraph of A being strongly connected.

Corollary to Theorem: An **irreducible** (0, 1)-matrix A of order $n \ge 2$ with all eigenvalues **nonnegative** has 0 as an eigenvalue and hence is singular.

(Otherwise, by the theorem A is triangular and hence reducible.)

Theorem generalized

Theorem: Let A be a (0, 1)-matrix of order n with trace at most r and with r positive eigenvalues and n - r zero eigenvalues. Then there is a permutation matrix P such that $PAP^T = D + B$ where B is a (0, 1)-matrix with 0s on and above the main diagonal and D is a (0, 1)-diagonal matrix with r 1s. In particular, A has r eigenvalues equal to 1, n - r eigenvalues equal to 0, and the trace of A equals r.

Theorem generalized

Theorem: Let A be a (0, 1)-matrix of order n with trace at most r and with r positive eigenvalues and n - r zero eigenvalues. Then there is a permutation matrix P such that $PAP^T = D + B$ where B is a (0, 1)-matrix with 0s on and above the main diagonal and D is a (0, 1)-diagonal matrix with r 1s. In particular, A has r eigenvalues equal to 1, n - r eigenvalues equal to 0, and the trace of A equals r.

Outline of Proof

Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_n$ be the eigenvalues of A. The AM/GM inequality gives

$$1 \geq \frac{\mathsf{trace}(A)}{r} = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_r}{r} \geq (\lambda_1 \lambda_2 \cdots \lambda_r)^{1/r}$$

The sum α_r of the determinants of the principal submatrices of order r of A (necessarily an integer) equals the sum of the products of the eigenvalues of A taken r at a time and so equals $\lambda_1 \lambda_2 \cdots \lambda_r$ and is positive. Thus $\alpha_r = \lambda_1 \lambda_2 \cdots \lambda_r \ge 1$. So

$$1 \geq \frac{\mathsf{trace}(A)}{r} = \frac{\lambda_1 + \lambda_2 \cdots + \lambda_r}{r} \geq (\lambda_1 \lambda_2 \cdots \lambda_r)^{1/r} \geq 1.$$

So equality throughout, and $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 1$. Thus *A* has *r* eigenvalues equal to 1, and n - r eigenvalues equal to 0, and the trace of *A* equals *r*.

Outline of Proof cont.

The Perron-Frobenius theory implies that A has r irreducible components A_1, A_2, \ldots, A_r each of which has spectral radius 1, and all other eigenvalues equal to 0; the remaining irreducible components, if any, are zero matrices of order 1.

Since each A_i is irreducible, each A_i has at least one 1 in each row and column. The Perron-Frobenius theory implies each A_i is a permutation matrix corresponding to a permutation cycle. Since the eigenvalues of A_i are one 1 and then all 0s, each A_i has order 1. Thus A has r 1s and n - r 0s on the main diagonal, and all 0s above the main diagonal.

Outline of Proof cont.

The Perron-Frobenius theory implies that A has r irreducible components A_1, A_2, \ldots, A_r each of which has spectral radius 1, and all other eigenvalues equal to 0; the remaining irreducible components, if any, are zero matrices of order 1.

Since each A_i is irreducible, each A_i has at least one 1 in each row and column. The Perron-Frobenius theory implies each A_i is a permutation matrix corresponding to a permutation cycle. Since the eigenvalues of A_i are one 1 and then all 0s, each A_i has order 1. Thus A has r 1s and n - r 0s on the main diagonal, and all 0s above the main diagonal.

The irreducible matrix

$$\left[\begin{array}{rrrrr}1&0&0&1\\1&1&0&0\\0&0&1&1\\1&1&1&1\end{array}\right]$$

of order 4 has trace equal to 4 and nonnegative eigenvalues $0, 1, (3 \pm \sqrt{5})/2$ of which 3 are positive. Since this matrix is irreducible, it cannot be simultaneously permuted to a triangular matrix. Thus the bound on the trace in the theorem is important.

How to get a handle on matrices with all eigenvalues nonnegative?

The irreducible matrix

$$\left[\begin{array}{rrrrr}1&0&0&1\\1&1&0&0\\0&0&1&1\\1&1&1&1\end{array}\right]$$

of order 4 has trace equal to 4 and nonnegative eigenvalues $0, 1, (3 \pm \sqrt{5})/2$ of which 3 are positive. Since this matrix is irreducible, it cannot be simultaneously permuted to a triangular matrix. Thus the bound on the trace in the theorem is important.

How to get a handle on matrices with all eigenvalues nonnegative?

TNN Matrices

A **TNN matrix** is a (rectangular) matrix in which the determinants of all square submatrices (in particular, all entries) are **nonnegative**.

Example:
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

Basic Property of square TNN matrices: All eigenvalues are nonnegative.

This property does not characterize square TNN matrices:

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

TNN Matrices

A **TNN matrix** is a (rectangular) matrix in which the determinants of all square submatrices (in particular, all entries) are **nonnegative**.

Example:
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

Basic Property of square TNN matrices: All eigenvalues are nonnegative.

This property does not characterize square TNN matrices:

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

TNN Matrices

A **TNN matrix** is a (rectangular) matrix in which the determinants of all square submatrices (in particular, all entries) are **nonnegative**.

Example:
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

Basic Property of square TNN matrices: All eigenvalues are nonnegative.

This property does not characterize square TNN matrices:

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

has eigenvalues 0, 2, 2 but A is not TNN (submatrix of order 2 in upper right corner), nor can the rows and columns be simultaneously permuted to a TNN matrix.. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

TNN Matrices

A **TNN matrix** is a (rectangular) matrix in which the determinants of all square submatrices (in particular, all entries) are **nonnegative**.

Example:
$$A = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

Basic Property of square TNN matrices: All eigenvalues are nonnegative.

This property does not characterize square TNN matrices:

$$A = \left[egin{array}{cccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

has eigenvalues 0, 2, 2 but A is not TNN (submatrix of order 2 in upper right corner), nor can the rows and columns be simultaneously permuted to a TNN matrix. (=)

The property for a (0,1)-matrix to be TNN (all submatrices have nonnegative determinants) is easier to handle than the weaker property that all eigenvalues are nonnegative.

What are the special properties TNN (0,1)-matrices?

de Boor - Pinkus Theorem 1982

In a TNN matrix with no zero rows or columns, the nonzero entries in each row and in each column occur consecutively. Moreover, the first and last nonzero entries in a row (resp. column) are not to the left of the first and last nonzero entries, respectively, in any preceding row (resp. column).

Thus if st denotes a nonzero entry, the such a TNN matrix has the form

de Boor - Pinkus Theorem 1982

In a TNN matrix with no zero rows or columns, the nonzero entries in each row and in each column occur consecutively. Moreover, the first and last nonzero entries in a row (resp. column) are not to the left of the first and last nonzero entries, respectively, in any preceding row (resp. column).

Thus if \ast denotes a nonzero entry, the such a TNN matrix has the form

$$\begin{bmatrix} * & * & * & 0 & 0 & 0 \\ * & * & * & * & * & 0 \\ 0 & 0 & * & * & * & 0 \\ 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & * & * & * & * \end{bmatrix}$$

(0,1) Case of de Boor - Pinkus Theorem 1982

The 1s have a **double staircase pattern**.

So in investigating (0, 1)-TNN matrices, it can be assumed that the 1s have this double staircase pattern.

(0, 1) Case of de Boor - Pinkus Theorem 1982

The 1s have a double staircase pattern.

So in investigating (0, 1)-TNN matrices, it can be assumed that the 1s have this double staircase pattern.

submatrices of order 2.

Proof of Double Staircase pattern

A cannot have any submatrix of order 2 equal to
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,
 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, or $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Consider any 0 in A:
 $A = \begin{bmatrix} \alpha & \\ \beta & 0 & \gamma \\ \hline \delta & \\ \hline \delta & \\ \hline \end{array}$. Not both α and β (γ and δ) can contain
a 1. So α is a zero column or β is a zero row, and γ is a zero row
or δ is a zero column. No zero row or column implies α is a zero
column and γ is a zero row, or β is a zero row and δ is a zero
column. So the 1s in each row and column occur consecutively.
The second conclusion follows from the nonexistence of the

ふつく 川 ふかくはく 小切く 白く

Forbidden Submatrix Characterization

Theorem: A (0,1)-matrix is TNN if and only if it does not have any submatrix equal to one of

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right], \ \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right], \ \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right], \ F = \left[\begin{array}{cc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]$$

The proof is by induction starting from a double staircase pattern.

Eigenvalue 0 of Irreducible Square (0, 1)-TNN matrices

Since TNN matrices have all eigenvalues nonnegative, it follows from a previous observation that if A is an irreducible (0, 1)-TNN matrix of order $n \ge 2$, then 0 is an eigenvalue of A.

Theorem: In fact, the **multiplicity of** 0 as an eigenvalue is **at** least

This follows from showing that a principal submatrix of order $k \ge \left\lceil \frac{n}{2} \right\rceil + 1$ of A has determinant equal to 0, and thus $x^{\lfloor n/2 \rfloor}$ is a factor of the characteristic polynomial.

Eigenvalue 0 of Irreducible Square (0, 1)-TNN matrices

Since TNN matrices have all eigenvalues nonnegative, it follows from a previous observation that if A is an irreducible (0, 1)-TNN matrix of order $n \ge 2$, then 0 is an eigenvalue of A.

Theorem: In fact, the **multiplicity of** 0 as an eigenvalue is **at** least $\left|\frac{n}{2}\right|$.

This follows from showing that a principal submatrix of order $k \ge \left\lceil \frac{n}{2} \right\rceil + 1$ of A has determinant equal to 0, and thus $x^{\lfloor n/2 \rfloor}$ is a factor of the characteristic polynomial.

Eigenvalue 0 of Irreducible Square (0, 1)-TNN matrices

Since TNN matrices have all eigenvalues nonnegative, it follows from a previous observation that if A is an irreducible (0, 1)-TNN matrix of order $n \ge 2$, then 0 is an eigenvalue of A.

Theorem: In fact, the **multiplicity of** 0 as an eigenvalue is **at** least $\left|\frac{n}{2}\right|$.

This follows from showing that a principal submatrix of order $k \ge \left\lceil \frac{n}{2} \right\rceil + 1$ of A has determinant equal to 0, and thus $x^{\lfloor n/2 \rfloor}$ is a factor of the characteristic polynomial.

(0, 1)-Hessenberg Matrices

These are square (0, 1)-matrices of the form

 $\begin{vmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \\ * & * & * & * & * \end{vmatrix}$ (all 0s above superdiagonal), * = 0 or 1.

(0, 1)-Hessenberg Matrices

These are square (0, 1)-matrices of the form

 $\begin{vmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & * & 0 \\ * & * & * & * & * \end{vmatrix}$ (all 0s above superdiagonal), * = 0 or 1.

In a full (0,1)-Hessenberg matrix H_n of order n the *s all equal 1 (* = 1):

Full (0, 1)-Hessenberg Matrices

Theorem: The characteristic polynomial of H_n equals:

$$q_n(\lambda) = \sum_{k=0}^{\left\lceil rac{n}{2}
ight
ceil} (-1)^k {n+1-k \choose k} \lambda^{n-k}.$$

The \pm coefficient of λ^{n-k} is the number of subsequences of $1, 2, \ldots, n$ of length k with no two numbers in the subsequence consecutive, and these sequences are in one-to-one correspondence with the principal submatrices of order k with a nonzero determinant (which is always 1).

Corollary: 0 is an **eigenvalue** of H_n with **multiplicity** $\lfloor \frac{n}{2} \rfloor$. **Remark:** Since the coefficients of $q_n(\lambda)$ alternate in sign, H_n cannot have any negative roots—a property we knew since H_n is TNN, and thus cannot have any non-real roots as well, z, z, z, z

Full (0, 1)-Hessenberg Matrices

Theorem: The characteristic polynomial of H_n equals:

$$q_n(\lambda) = \sum_{k=0}^{\left\lceil rac{n}{2}
ight
ceil} (-1)^k {n+1-k \choose k} \lambda^{n-k}.$$

The \pm coefficient of λ^{n-k} is the number of subsequences of $1, 2, \ldots, n$ of length k with no two numbers in the subsequence consecutive, and these sequences are in one-to-one correspondence with the principal submatrices of order k with a nonzero determinant (which is always 1).

Corollary: 0 is an **eigenvalue** of H_n with **multiplicity** $\left\lfloor \frac{n}{2} \right\rfloor$.

Remark: Since the coefficients of $q_n(\lambda)$ alternate in sign, H_n cannot have any negative roots—a property we knew since H_n is TNN, and thus cannot have any non-real roots as well, $z \to z \to \infty$

Full (0, 1)-Hessenberg Matrices

Theorem: The characteristic polynomial of H_n equals:

$$q_n(\lambda) = \sum_{k=0}^{\left\lceil rac{n}{2}
ight
ceil} (-1)^k {n+1-k \choose k} \lambda^{n-k}.$$

The \pm coefficient of λ^{n-k} is the number of subsequences of $1, 2, \ldots, n$ of length k with no two numbers in the subsequence consecutive, and these sequences are in one-to-one correspondence with the principal submatrices of order k with a nonzero determinant (which is always 1).

Corollary: 0 is an **eigenvalue** of H_n with **multiplicity** $\lfloor \frac{n}{2} \rfloor$. **Remark:** Since the coefficients of $q_n(\lambda)$ alternate in sign, H_n cannot have any negative roots—a property we knew since H_n is TNN, and thus cannot have any non-real roots as well, $\underline{=}$, $\underline{=}$,

Characterization of Full (0, 1)-Hessenberg Matrices

Full (0, 1)-Hessenberg matrices are clearly irreducible.

Theorem: Let X_n be an irreducible, TNN (0, 1)-Hessenberg matrix of order *n*. Then $X_n = H_n$.

Thus H_n is the only irreducible (0,1) Hessenberg matrix of order n which is TNN.

Reason: Irreducibility with double staircase pattern implies that X_n has 1s everywhere on the superdiagonal, diagonal, and subdiagonal. The forbidden matrices of orders 2 and 3 imply that X_n is full.

Characterization of Full (0, 1)-Hessenberg Matrices

Full (0, 1)-Hessenberg matrices are clearly irreducible.

Theorem: Let X_n be an irreducible, TNN (0, 1)-Hessenberg matrix of order *n*. Then $X_n = H_n$.

Thus H_n is the only irreducible (0,1) Hessenberg matrix of order *n* which is TNN.

Reason: Irreducibility with double staircase pattern implies that X_n has 1s everywhere on the superdiagonal, diagonal, and subdiagonal. The forbidden matrices of orders 2 and 3 imply that X_n is full.

Extreme (0, 1)-TNN Matrices

The full (0,1)-Hessenberg matrix H_n is a TNN with (n-1)(n-2)/2 0s. This leads to the Question: How many 0s can an irreducible (0,1)-TNN matrix of order n have?

TNN and irreducibility imply double staircase pattern with 1s everywhere on superdiagonal, diagonal, subdiagonal. But this does not guarantee TNN: Recall the forbidden matrix

$$F_3 = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

Let z_n denote the maximum number of 0s in an irreducible (0,1)-TNN matrix. Note that the number of 1s in such a matrix is at least (n-1) + n + (n-1) = 3n - 2, and so the number of 0s is at most $n^2 - (3n - 2) = (n - 1)(n - 2)$.

Extreme (0, 1)-TNN Matrices

The full (0,1)-Hessenberg matrix H_n is a TNN with (n-1)(n-2)/2 0s. This leads to the Question: How many 0s can an irreducible (0,1)-TNN matrix of order n have?

TNN and irreducibility imply double staircase pattern with 1s everywhere on superdiagonal, diagonal, subdiagonal. But this does not guarantee TNN: Recall the forbidden matrix

$$F_3 = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Let z_n denote the maximum number of 0s in an irreducible (0,1)-TNN matrix. Note that the number of 1s in such a matrix is at least (n-1) + n + (n-1) = 3n - 2, and so the number of 0s is at most $n^2 - (3n-2) = (n-1)(n-2)$.

Extreme (0, 1)-TNN Matrices

The full (0,1)-Hessenberg matrix H_n is a TNN with (n-1)(n-2)/2 0s. This leads to the Question: How many 0s can an irreducible (0,1)-TNN matrix of order n have?

TNN and irreducibility imply double staircase pattern with 1s everywhere on superdiagonal, diagonal, subdiagonal. But this does not guarantee TNN: Recall the forbidden matrix

$$F_3 = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Let z_n denote the maximum number of 0s in an irreducible (0, 1)-TNN matrix. Note that the number of 1s in such a matrix is at least (n-1) + n + (n-1) = 3n - 2, and so the number of 0s is at most $n^2 - (3n-2) = (n-1)(n-2)$.

Extreme (0, 1)-TNN Matrices, continued

Theorem: The maximum number z_n of 0s in an irreducible (0, 1)-TNN matrix of order $n \ge 2$ is

$$z_n=(n-2)^2.$$

Let A_3 be the full (0, 1)-TNN matrix $H_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Question: Which irreducible (0, 1)-TNN matrices have exactly z_n 0s?

Extreme (0, 1)-TNN Matrices, continued

Theorem: The maximum number z_n of 0s in an irreducible (0, 1)-TNN matrix of order $n \ge 2$ is

$$z_n=(n-2)^2.$$

Let
$$A_3$$
 be the full (0, 1)-TNN matrix $H_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Question: Which irreducible (0, 1)-TNN matrices have exactly z_n 0s?

Extreme (0,1)-TNN Matrices, continued

Let X and Y be matrices of orders k and l, respectively, where the submatrix of order 2 of X in its lower right is J_2 (all 1s) and the submatrix of order 2 of Y in its upper left is also J_2 . Then X * Y is the matrix of order k + l - 2 obtained by 'joining' X and Y at their J_2 s, and setting every other entry equal to 0.

Example: If $X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, then

$$\mathsf{X} * \mathsf{Y} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & \mathbf{1} & \mathbf{1} & 1 \\ 1 & \mathbf{1} & \mathbf{1} & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Extreme (0, 1)-TNN Matrices, continued

Let X and Y be matrices of orders k and l, respectively, where the submatrix of order 2 of X in its lower right is J_2 (all 1s) and the submatrix of order 2 of Y in its upper left is also J_2 . Then X * Y is the matrix of order k + l - 2 obtained by **'joining'** X and Y at their J_2 s, and setting every other entry equal to 0.

Example: If $X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, then $X * Y = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$

Extreme (0, 1)-TNN Matrices, continued

.

Let a matrix of order *n* be defined by: $A_n = A_3 * A_3^t * A_3 * A_3^t * \cdots$ (ends with A_3^t (*n* even) and with A_3 (*n* odd)) where e.g.

$$A_5 = A_3 * A_3^t * A_3 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Theorem: Let A be an irreducible (0, 1)-TNN matrix of order n with $z_n = (n-2)^2$ 0s. Then

$$A = A_n$$
 or A_n^t .

Extreme (0, 1)-TNN Matrices, continued

Let a matrix of order *n* be defined by: $A_n = A_3 * A_3^t * A_3 * A_3^t * \cdots$ (ends with A_3^t (*n* even) and with A_3 (*n* odd)) where e.g.

$$A_5 = A_3 * A_3^t * A_3 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

Theorem: Let A be an irreducible (0, 1)-TNN matrix of order n with $z_n = (n-2)^2$ 0s. Then

$$A = A_n$$
 or A_n^t .

Spectrum of Extreme (0, 1)-TNN Matrices

A generalized full (0,1)-Hessenberg matrix is a matrix of the form

$$H_{k_1} * H_{k_2}^t * H_{k_3} * H_{k_4}^t * \cdots$$
 or $H_{k_1}^t * H_{k_2} * H_{k_3}^t * H_{k_4} * \cdots$

Lemma: All generalized full (0,1)-Hessenberg matrices of order n have the same spectrum and thus the same spectrum as H_n . In particular, the extremal matrices A_n have the same spectrum as H_n .

Note that the ranks of H_n and A_n are different: $rank(H_n) = n - 1$ but $rank(A_n) = \lfloor \frac{n}{2} \rfloor$.

Spectrum of Extreme (0, 1)-TNN Matrices

A generalized full (0,1)-Hessenberg matrix is a matrix of the form

$$H_{k_1} * H_{k_2}^t * H_{k_3} * H_{k_4}^t * \cdots$$
 or $H_{k_1}^t * H_{k_2} * H_{k_3}^t * H_{k_4} * \cdots$

Lemma: All generalized full (0,1)-Hessenberg matrices of order n have the same spectrum and thus the same spectrum as H_n . In particular, the extremal matrices A_n have the same spectrum as H_n .

Note that the ranks of H_n and A_n are different: rank $(H_n) = n - 1$ but rank $(A_n) = \lfloor \frac{n}{2} \rfloor$.

Spectrum of Extreme (0, 1)-TNN Matrices, continued

Theorem: The **minimum Perron value** (spectral radius) of an irreducible, (0, 1)-TNN matrix A of order n is $2 + 2 \cos \frac{2\pi}{n+2}$, achieved if and only if A is a **generalized full** (0, 1)-**Hessenberg matrix**.

Corollary: The irreducible (0,1)-TNN matrices of order *n* with the minimum Perron value all have the same spectrum.

Spectrum of Extreme (0, 1)-TNN Matrices, continued

Theorem: The **minimum Perron value** (spectral radius) of an irreducible, (0, 1)-TNN matrix A of order n is $2 + 2 \cos \frac{2\pi}{n+2}$, achieved if and only if A is a **generalized full** (0, 1)-**Hessenberg matrix**.

Corollary: The irreducible (0, 1)-TNN matrices of order *n* with the minimum Perron value all have the same spectrum.

Reference: RAB and S. Kirkland, LAA, 432 (2010), 1650–1662,

We have concentrated on TNN (0,1)-matrices as a way to investigate (0,1)-matrices with all eigenvalues nonnegative.

It's more difficult to get a handle on arbitrary (0,1)-matrices with nonnegative eigenvalues, but we are planning to continue our investigations.

Life is Good!

